Research team wins Rudolf Kingslake Award for SiC optical polishing method

Aug. 30, 2016
Three researchers will receive the Rudolf Kingslake Medal and Prize for 2015, to be presented at SPIE Optics + Photonics 2016.

Three researchers from the PLA University of Science and Technology (China) and two from the Research Center for Ultraprecision Science and Technology of Osaka University (Japan) will receive the Rudolf Kingslake Medal and Prize for 2015, to be presented at SPIE Optics + Photonics (August 28 - September 1, 2016; San Diego, CA) the evening of August 31st. The award is presented annually to the most noteworthy original paper published in the journal Optical Engineering.

Xinmin Shen, Qunzhang Tu, Guoliang Jiang, Hui Deng, and Kazuya Yamamura are the authors of the winning paper, "Mechanism analysis on finishing of reaction-sintered silicon carbide by combination of water vapor plasma oxidation and ceria slurry polishing," which was published in the May 2015 issue of Optical Engineering.

Reaction-sintered silicon carbide (RS-SiC) has robust mechanical, chemical, and thermal properties, so it has particular utility in space telescope systems and as ceramic material used for molds of glass lenses. Some of these properties include a low thermal expansion coefficient, high thermal conductivity, high radiation resistance, high specific stiffness, and impressive bending strength. But because of the compound's high level of hardness and chemical inertness, researchers have run into a few challenges—including the removal of RS-SiC post-application, which is very difficult using traditional mechanical and chemical techniques.

Smoothing and finishing of a RS-SiC surface has also proved to be a difficult task. The most promising and effective method so far involves a two-step process of water vapor plasma surface oxidation for 90 min. (see figure), followed by 40 min. of ceria slurry polishing on the oxidized layer shown in (b). Once an ultra-smooth surface has been achieved, the compound can be further developed and/or promoted for application in the fields of optics and ceramics.


The proposed technique is "a low-cost, efficient, and simple process, and the oxide layer is easy to machine, which can be an attractive technique for the machining of RS-SiC, RB-SiC, HP-SiC, and other SiC products by further development," the authors say.

The material is challenging to fabricate because of its high hardness, chemical durability, and grain structure, says Optical Engineering associate editor Jessica DeGroote Nelson (Optimax Systems; Ontario, NY). "The approach described by the authors combines precise chemical and mechanical processes utilizing plasma etching and cerium oxide polishing to provide ultrasmooth surfaces on RB-SiC," she says, noting that the material removal approach may also prove beneficial on other types of SiC in the future.

For full details of the work in Optical Engineering, please visit http://dx.doi.org/10.1117/1.oe.54.5.055106.

About the Author

LFW Staff

Published since 1965, Laser Focus World—a brand and magazine for engineers, researchers, scientists, and technical professionals—provides comprehensive global coverage of optoelectronic technologies, applications, and markets. With 80,000+ qualified print subscribers in print and over a half-million annual visitors to our online content, we are the go-to source to access decision makers and stay in-the-know.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!