Patterned silica glass layer makes solar cells self-cooling

A solar cells cools itself by shepherding away unwanted thermal radiation. Micropyramids made of silica glass provide maximal radiative cooling capability. (Credit: L. Zhu, Stanford University)

Scientists at Stanford University (Palo Alto, CA) have increased the ability of silicon (Si) photovoltaic cells to radiate IR light, and thus heat, away during operation, thus lowering the devices' temperature and increasing lifetime and efficiency. They do this by adding patterned layer of silica glass to the surface of conventional Si solar cells. The technology is described in the premiere issue of The Optical Society's (OSA) new open-access journal Optica.1

Under normal operating conditions, solar cells can easily reach temperatures of 55°C or more. These harsh conditions quickly sap efficiency and can markedly shorten the lifespan of a solar cell. Actively cooling solar cells, however (either by ventilation or coolants) would be prohibitively expensive and at odds with the need to optimize exposure to the Sun.

The newly proposed design avoids these problems by taking a passive approach to cooling. By creating microscopic pyramid- and cone-shaped structures on an thin layer of silica glass, the researchers found a way of redirecting unwanted heat (in the form of IR light) from the surface of solar cells, through the atmosphere, and back into space.

Aged cells not wanted
Ordinarily, for every 1°C increase in the temperature of a Si solar cell, the efficiency of a solar cell declines by about 0.5%. In addition, solar cells age more rapidly when their temperatures increase, with the rate of aging doubling for every increase of 10°C.

To passively cool the solar cells, allowing them to give off excess heat without spending energy doing so, requires exploiting an infrared window through Earth's atmosphere.

"Silica is transparent to visible light, but it is also possible to fine-tune how it bends and refracts light of very specific wavelengths," says Shanhui Fan, an electrical-engineering professor at Stanford University. "A carefully designed layer of silica would not degrade the performance of the solar cell but it would enhance radiation at the predetermined thermal wavelengths to send the solar cell's heat away more effectively."

To test their idea, the researchers compared two different silica covering designs: one a flat surface approximately 5 mm thick and the other a thinner layer covered with pyramids and microcones just a few microns thick in any dimension. By precisely controlling the width and height of the pyramids and microcones, they could be tuned to refract and redirect only the unwanted IR wavelengths away from the solar cell and back out into space.

"We were quite pleased to see that while the flat layer of silica provided some passive cooling, the patterned layer of silica considerably outperforms the 5 mm-thick uniform silica design, and has nearly identical performance as the ideal scheme," says Fan. (In the ideal scheme for a bare Si cell, the cell is cooled by 18.3°C.)

The team's next step is to demonstrate radiative cooling of solar cells in an outdoor environment.

Source: http://www.osa.org/en-us/about_osa/newsroom/news_releases/2014/self-cooling_solar_cells_boost_power,_last_longer/

REFERENCE:

1. L. Zhu et al., Optica 1, 32-38 (2014); http://dx.doi.org/10.1364/OPTICA.1.000032

 

 

 

Most Popular Articles

50 YEARS OF GAS LASERS


Durable survivors evolve new forms

Webcasts

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

All About Aspheric Lenses

The most notable benefit of aspheric lenses is their ability to correct for spherical aberration....

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...
Technical Digests

RAMAN SPECTROSCOPY: The technical advances just keep coming

In Raman spectroscopy, light from a laser interacts with a test sample, undergoing a wavelength s...

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS