Moth-eye antireflective optical film comes with its own cleaning agent

Feb. 21, 2014
Cambridge, England--Researchers from the University of Cambridge, Cornell University (Ithaca, NY), CSM Instruments (Peseux, Switzerland), and the University of South Carolina (Columbia, SC) have created a self-cleaning AR moth-eye coating by incorporating a photocatalytic material in the structure.

Cambridge, England--"Moth-eye" antireflection (AR) thin-film optical coatings, which create an index gradient (and thus AR properties) using 2D periodic arrays of tapered subwavelength structures, have been created in many forms. One of the perceived problems of these coatings is that their structures can get clogged with contaminantsfingerprint oil, for exampleand thus lose their AR properties.

Now, researchers from the University of Cambridge, Cornell University (Ithaca, NY), CSM Instruments (Peseux, Switzerland), and the University of South Carolina (Columbia, SC) have created a self-cleaning AR moth-eye coating by incorporating a photocatalytic material in the structure.1 The group created a polymer moth-eye structure with a larger-than normal array period that allowed them to incorporate preformed titanium dioxide (TiO2) nanocrystals within the array.

When light falls on the photocatalytic TiO2 nanocrystals, they break down the dirt clogging the structure until all that is left is carbon dioxide and water (which evaporates off the surface). In early tests of the material, the TiO2 nanoparticles were able to break down all of the oils contained in a fingerprint within 90 minutes. The coating is capable of breaking down most of the standard hydrocarbons that clog most porous AR coatings, the researchers assert.

The coating, which can be deposited onto flexible plastic substrates, adheres to the substrate through sol-gel chemistry, resulting in a durable bond and a coating that will not flake off, say the researchers. The material is currently only suitable for outdoor applications. as it requires UV light for photocatalysis to occur; however, the researchers are planning more tests to see if the material could be adapted in future for indoor light.

Potential applications include building glass and solar cells.

REFERENCE:

1. Stefan Guldin et al., Nano Letters 2013 13 (11); doi: 10.1021/nl402832u

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!