NIST researchers achieve chip-scale bidirectional optical frequency conversion between 980 and 1550 nm

Dec. 18, 2013
Gaithersburg, MD, College Park, MD, and Pasadena, CA--Researchers from the National Institute of Standards and Technology (NIST), the University of Maryland, and the California Institute of Technology (Caltech) have created a chip-scale optical frequency converter that uses four-wave-mixing Bragg scattering in silicon nitride waveguides on silicon substrates to upconvert and downconvert between the 980 nm and 1550 nm wavelength regions.
In frequency downconversion, a 980 nm input signal is frequency-shifted to the 1550 nm wavelength band through the application of two strong pump lasers. The reverse process of upconversion was also demonstrated. Inset: A scanning electron micrograph (SEM) of the cross-section of a silicon nitride waveguide designed for the frequency conversion is shown with a simulation of the device's optical field profile superimposed. (Image: NIST)


Gaithersburg, MD, College Park, MD, and Pasadena, CA--Researchers from the National Institute of Standards and Technology (NIST), the University of Maryland, and the California Institute of Technology (Caltech) have created a chip-scale optical frequency converter that uses four-wave-mixing Bragg scattering in silicon nitride waveguides on silicon substrates to upconvert and downconvert between the 980 nm and 1550 nm wavelength regions.1 The device can be used to link system components that perform optimally at their specific tasks, but operate at different wavelengths; components can include quantum dots (QDs) and even naturally occurring atoms such as neutral alkali atoms.

Earlier work had demonstrated conversion over a range of a few nanometers with conversion efficiencies reaching a few percent; here, the authors extended the conversion range to nearly 600 nm. This improvement was made possible by the nature of the four-wave-mixing process, in which the locations of the two pump fields, input signal, and converted signal can be rearranged while preserving the requirements of energy and momentum conservation.

The authors demonstrated that the process was bidirectional (signals can be converted from 980 nm to 1550 nm and back), and developed designs to interface light at wavelengths all the way down to 637 nm -- characteristic of the nitrogen vacancy center in diamond -- with the 1550 nm band. (Diamond vacancies are one of the most important potential components in room-temperature quantum optical systems.) The technique requires low pump powers of less than 50 mW.

Future work will be focused on significantly increasing the conversion efficiency levels of these devices by optimizing the geometries and using resonant cavities.

Source: http://www.nist.gov/cnst/nanophotonics_freq_conv_interface.cfm

REFERENCE:

1. I. Agha et al., Optics Express 21, p. 21628 (2013).

Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!