Photonic loops could improve light steering inside computer chips

Gaithersburg, MD--Research performed at the Joint Quantum Institute of the National Institute of Standards and Technology (NIST) and the University of Maryland, together with Harvard University may make it possible to steer particles of light accurately through computer chips. The scientists say the work--based on using multiple rows of photonic resonators--not only may lead to more efficient information processors on our desktops, but also could offer a way to explore a particularly strange effect of the quantum world known as the quantum Hall effect in which electrons can interfere with themselves as they travel in a magnetic field.

"We run into problems when trying to use photons in microcircuits because of slight defects in the materials chips are made from," says Jacob Taylor, a theoretical physicist at NIST and JQI. These defects are particularly problematic when they occur in photon delay devices, which slow the photons down to store them briefly until the chip needs the information they contain. Delay devices are usually constructed from a single row of tiny resonators, so a defect among them can ruin the information in the photon stream. But the research team perceived that using multiple rows of resonators would build alternate pathways into the delay devices, allowing the photons to find their way around defects easily.

Optical fibers make it possible for dozens of independent phone conversations to travel long distances along a single glass cable by, essentially, assigning each conversation to a different color--each narrow strand of glass carrying dramatic amounts of information with little interference. But while it is easy to send photons far across a town or across the ocean, scientists have a harder time directing them to precise locations across short distances--say, a few hundred nanometers--and this makes it difficult to use photons as information carriers inside computer chips.

Lead author Mohammad Hafezi says the prospect of investigating the quantum Hall effect with the same technology also has great scientific appeal. "The photons in these devices exhibit the same type of interference as electrons subjected to the quantum Hall effect," says Hafezi, a research associate at JQI. "We hope these devices will allow us to sidestep some of the problems with observing the physics directly, instead allowing us to explore them by analogy."

The corresponding physics is rich enough that its investigation has already resulted in three Nobel Prizes, but many intriguing theoretical predictions about it have yet to be observed.

SOURCE: NIST; www.nist.gov/pml/div684/photon-082211.cfm


Posted by: Gail Overton 

Subscribe now to Laser Focus World magazine; It’s free! 

Follow us on Twitter

Follow OptoIQ on your iPhone. Download the free App here

Most Popular Articles

Webcasts

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...

Infinite Possibilities – Easily Combining Scanner and Servo Motion

High precision motion control applications such as laser micromachining, 2-photon polymerization, glass panel and film patterning, and additive manufacturing...

Solutions in Search of Problems: What Spectroscopy Can Do for You

Spectroscopy is so pervasive that most of us take it for granted. We use it for routine laboratory and test measurements without appreciating how those same ...

Technical Digests

HIGH-ENERGY LASER COATINGS: Eliminating laser damage proactively

High-power and high-energy thin-film antireflection coatings for laser optics require careful des...
Sponsored by

LIBS -- spectroscopy for remote identification of materials

Laser-induced-breakdown spectroscopy (LIBS) uses a pulsed laser to vaporize a small sample of a s...
Sponsored by

Laser Tools for Materials Processing

Laser materials processing requires not only the appropriate industrial laser system, but also a ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

Phantom ir300

The Phantom ir300 provides extended spectral response beyond visible light spectrum up ...

Miro Airborne

Miro Airborne is a high-speed camera designed for airborne applications.

Phantom Miro Family

The Phantom Miro family are small, lightweight digital high-speed cameras.

RELATED COMPANIES

Photonics Bretagne

Offers a cluster composed of research centers, schools and companies all in the field o...

Raw Communications

Provider of marketing services in the fiber optic data communications industry includin...

XiO Photonics B V

Offers strong competence in integrated optical products for visible light applications....

Social Activity

  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS