CREOL researchers create integrated optical lithium-niobate-on-silicon devices

Nov. 15, 2013
Orlando, FL—Researchers at The University of Central Florida (UCF) College of Optics and Photonics (CREOL) have figured out how to coat a silicon chip with a film of the nonlinear optical material lithium niobate (LiNbO3); the achievement will aid in the creation of integrated photonic circuit components such as low-loss microring resonators and high-performance Mach-Zehnder optical modulators.

Orlando, FL--Researchers at The University of Central Florida (UCF) College of Optics and Photonics (CREOL) have figured out how to coat a silicon chip with a film of the nonlinear optical material lithium niobate (LiNbO3); the achievement will aid in the creation of integrated photonic circuit components such as low-loss microring resonators and high-performance Mach-Zehnder optical modulators.1 The work was led by professor Sasan Fathpour.

"Lithium niobate devices are bulky and expensive," says Fathpour. "If thin films of lithium niobate are developed and the geometrical cross-section of the devices on the films can be reduced to submicron dimensions, the field of integrated photonics can move toward a more unifying platform."

Silicon (Si) itself can serve as as the base for many integrated photonics devices; other semiconductors like germanium can be monolithically integrated onto Si to create active devices such as detectors. Of course, Si is also the consummate platform for electronics. The addition of LiNbO3 to the integrated-photonics “toolbox” can pave the path toward using optics to transmit data between microprocessors, graphics and memory chips in future personal computers, game consoles, laptops, and tablets.

Half-micron-thick LiNbO3 film

Fathpour and his team managed to bond thin films less than half a micrometer thick of LiNbO3 to Si wafers. The films themselves may have applications other than photonics (microelectromechanical systems, microwave filters for cell phones, and piezoelectric transducers, to name a few). For now, Fathpour’s group is more focused on demonstrating basic integrated photonic devices such as low-loss microring resonators and high-performance optical modulators.

The CREOL group demonstrated electro-optic modulators whose driving voltage is several times less than the best commercial devices, and micro rings with diameters less than a third of a millimeter. All of this will allow integrating several miniaturized modulators and other photonic devices on a single Si chip for advanced communication formats.

The work is funded under the Office of Naval Research Young Investigator Program.

REFERENCE:

1. Payam Rabiei et al., Optics Express (2013); doi: 10.1364/OE.21.025573

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Semrock Optical Filters Resources

March 19, 2024
Looking for more information about Semrock optical filters? Explore sets by fluorophore, download the 2023 Semrock catalog and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!