Inline coherent imaging improves laser cutting accuracy in surgical applications

April 19, 2012
Kingston, ON, Canada--Medical and physics experts from Queen's University have developed a technique that significantly improves laser accuracy.

Kingston, ON, Canada--Medical and physics experts from Queen's University have developed a technique that significantly improves laser accuracy to the point where surgical cutting can be controlled to stop at a precise point--within 50 microns. The device is partially based on optical coherence tomography (OCT), which allows the user to see along the light beam that accompanies the cutting laser. Calling their adaption "inline coherent imaging", they can get depth images from the incision and essentially, see below the surface.

"A major problem that's really hindering laser application in major surgeries is that the light beam just keeps going," said James Fraser of Queen's University, the physicist who developed the device. The team includes Queen's PhD student Paul Webster, as well as Ben Leung, a former alumnus at the school who initially helped with the surgical application. Victor X. D. Yang of Ryerson University also helped with some medical direction.

The density and power of the cut, however, depend on the laser that the device is being applied to. The procedure would be effective, for example, on surgeries that involve accessing the brain. "Though the surgeon would have to be in final control, you could imagine that this would allow a semi-robotic method for operations."

Fraser said the new device will hopefully allow a number of advances, including: helping surgeons plan procedures ahead of time; completing procedures faster; reducing surgical complications; and improvements to post-operative implications.

Although the most prominent uses for controlling the depth of laser cutting are surgical and clinical, Fraser said the team is "very excited about the potential industrial applications," especially since compared to clinics it's easier to get new technology into industries. "In a few weeks, we'll be running industrially relevant processes," Fraser said. Those will likely include further testing on laser cutting and laser welding, which, for instance, are important techniques when working with automotive components--an area that experiences the same depth issue as surgery.

SOURCE: Ottawa Citizen; www.ottawacitizen.com/technique+significant+improvement+laser+accuracy/6473544/story.html

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!