Photosynthetic molecule plus semiconductor make efficient biophotovoltaics


Image: Lykaestria at the English language Wikipedia

Knoxville, TN--Barry Bruce and colleagues at the University of Tennessee, Knoxville have created photovoltaic cells containing a nanosctructured semiconductor on which a photosynthetic pigment/protein (photosystem-I, or PS-I) has self-assembled.1 The device has an open-circuit voltage of 0.5 V, an electrical power density of 81 µW/cm2 and a photocurrent density of 362 µA/cm2 -- a current density more than 10,000 times higher than any previous biophotovoltaic device based on PS-I.

The researchers collaborated with others from the Massachusetts Institute of Technology (Cambridge, MA) and Ecole Polytechnique Federale (Lausanne, Switzerland). “As opposed to conventional photovoltaic solar power systems, we are using renewable biological materials rather than toxic chemicals to generate energy," says Bruce. "Likewise, our system will require less time, land, water and input of fossil fuels to produce energy than most biofuels.”

PS-I bioengineered for the purpose
The PS-I is extracted from blue-green algae, then bioengineered to specifically interact with nanostructured conductive zinc oxide so that, when illuminated, the process of photosynthesis produces electricity. The approach is simple enough that it can be replicated in most labs, allowing others around the world to work toward further optimization.

The mechanism is orders of magnitude more efficient than earlier work done by Bruce for producing bioelectricity thanks to the interfacing of PS-I with the large surface provided by the nanostructured conductive zinc oxide; however it still needs to improve manifold to become useful. Still, the researchers are optimistic and expect rapid progress.

Andreas Mershin, a research scientist at MIT, conceptualized and created the nanoscale wires and platform. He credits his design to observing the way needles on pine trees are placed to maximize exposure to sunlight.

Mohammad Khaja Nazeeruddin in the lab of Michael Graetzel, a professor at the Ecole Polytechnique Federale in Lausanne, Switzerland, did the complex testing needed to determine that the new mechanism actually performed as expected. Graetzel is a pioneer in energy and electron transfer reactions and their application in solar energy conversion.

Michael Vaughn, once an undergraduate in Bruce’s lab and now a National Science Foundation predoctoral fellow at Arizona State University, also collaborated on the paper.

Bruce’s work is funded by the Emerging Frontiers Program at the National Science Foundation.


1. Andreas Mershin et al., Nature: Scientific Reports, accepted 05 Jan. 2012, published 02 Feb. 2012; doi:10.1038/srep00234


A long way from the ruby laser

Most Popular Articles


Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Optical Isolators Improve Engraving Performance of Pulsed Fiber Lasers

The deleterious effects of back reflections on pulsed fiber lasers used in marking and engraving ...
Technical Digests

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS