HIGH-SPEED CAMERAS: Trillion fps visualizations image light in slow motion

Researchers at the Massachusetts Institute of Technology (MIT; Cambridge MA) Media Lab have developed a variety of streak camera that can be used to create trillion frame/s visualizations—slowing down and capturing even the motion of speed-of-light photons.1

For most high-speed time-of-flight and gated intensified CCD or ICCD imaging techniques used for light detection and ranging (lidar) and other ultrafast molecular imaging applications, the data revealed are typically depth-of-field or depth imaging data. The MIT Media Lab technique instead uses the two-dimensional (2D) narrow aperture of a streak camera to capture one-dimensional (1D) spatial information corresponding to the direction of the slit, and in the second dimension corresponding to the degree of deflection, to capture time information.

Ultrafast enablers
Enabled by ultrafast sources, detectors, and optical systems, the modified streak camera captures images that are used to reconstruct a full 2D movie at a resolution of 672 × 1000 pixels at a speed of about 0.5 × 1012 frames/s (2 ps time resolution).

A 795 nm, 600 mW ultrafast Ti:sapphire laser delivers 50 fs pulses at a repetition rate of 75 MHz to the scene. A small fraction of the beam is split off with a glass slide to synchronize the photodetector with the Hamamatsu C5680 streak camera, which has a time resolution of 512 samples over a 1 ns duration and a 1D field of view with a spatial resolution of 672 pixels.

Because the streak camera provides only the temporal evolution of a line in the scene (a 1D movie), a mirror system scans the field of view of the camera across the scene to capture a series of images—up to 1000 images over a two-hour period—to create a 2D movie since the laser and camera are synchronized.

“We call this ‘the world’s slowest fastest camera’ because it takes about an hour to collect all the data for a nanosecond-long video,” says MIT Media Lab associate professor Ramesh Raskar. “However, the camera enables the exploration of ultrafast phenomena such as the propagation of light in anisotropic media and photonic crystals, and could be used in materials-analysis applications to detect embedded defects or to analyze materials in a scene without entering the scene, for example.”

Trillion frame/s movies
Using the ultrafast trillion frame/s setup, one of the movies developed by the researchers shows a pulse of light as it transits a soda bottle filled with water (see http://youtu.be/EtsXgODHMWk), showing multibounce light transport and subsurface scattering.

A system to visualize trillion frame-per-second events captures a light pulse over time (represented by colored bands) as it travels across a tomato and a roll of tape
The spherical front of a light pulse illuminates a tomato and a roll of tape. The colored bands represent the pulse as it travels over time during a movie, with each band separated by approximately 20 ps.

In another video, a tomato and a roll of tape are imaged as a pulse of light energizes the scene (see figure and video at http://youtu.be/P-HqKjBgLPM). The pulse is reflected by a diffusely scattering surface on the right side of the scene to create a virtual light source, emerging as a spherical pulse front. As the pulse moves across the scene from left to right, some stray light first hits the tomato. After striking the diffuser, light floods the scene.

Indirectly illuminated parts of the scene (top of the tomato and inside the roll of tape) are not reached by the first direct wave of light, but only light up later as indirect light from the scattered wave reaches them. Shadows are visible after illumination, and the direct light that hits the back wall of the scene is reflected back toward the tomato and is trapped under the skin of the tomato due to subsurface scattering, where it glows for a while as the light fades.

1. L. Hardesty, “Trillion-frame-per-second video,” MIT News Office, http://web.mit.edu/newsoffice/2011/trillion-fps-camera-1213.html (Dec. 13, 2011).

Most Popular Articles


Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

Introduction to scientific InGaAs FPA cameras

Working in the near infrared (NIR) and shortwave infrared (SWIR) regions of the spectrum offers r...
Technical Digests

OPTICAL COATINGS: Evolving technology produces new benefits

The antireflection, high-reflection, and/or spectral characteristics provided by optical coatings...

REMOTE FIBER-OPTIC SENSING: Data in abundance from difficult environments

The use of optical fibers to measure strain, temperature, and other parameters at desired points ...

SCANNERS FOR MATERIALS PROCESSING: Serving demanding applications

Galvanometer-based scanners are an essential component in laser-based materials-processing system...

Click here to have your products listed in the Laser Focus World Buyers Guide.


AFL Secures Patent for OTDR Technology

10/03/2013 AFL has been awarded a patent for “Optical Time Domain Reflectometer,” US Patent 8,411,259. The p...
Social Activity
Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS