In theory, surface-plasmon-driven superlens looks promising for wideband use

In an illustration of Durdu Güney's theoretical metamaterial, magnetic fields generated by plasmons are depicted in color. Black arrows show the direction of electrical current in metallic layers; the numbers indicate current loops that contribute to negative refraction. (Image: Michigan Technological University)

Houghton, MI--Durdu Güney, an assistant professor of electrical and computer engineering at Michigan Technological University, has taken a step toward creating a superlens that could use visible light to see objects as small as 100 nm across.1 The lens would be made of an optical plasmonic metamaterial.

Other researchers have been able to create superlenses that sidestep the diffraction limit, but not throughout the entire visible spectrum. Güney’s model shows how metamaterials might be “stretched” to refract light from the IR through the visible and into the UV.

In the superlens, a thin metal film interacts with a periodic array of nanostructures around it, resulting in a surface-plasmon-driven metamaterial with a double negative refractive index (simultaneous negative permittivity and permeability). Making these superlenses could be relatively inexpensive, possibly even enabling them to find their way into cell phones. But there would be other uses as well, says Güney.

“It could also be applied to lithography," he says. Semiconductor-chip patterns are made using light from UV excimer lasers. “With this superlens," says Güney, "you could use a red laser, like the pointers everyone uses, and have simple, cheap [optical lithography] machines, just by changing the lens.”

What excites Güney the most, however, is that a cheap, accessible superlens could open our collective eyes to worlds previously known only to a very few. “The public’s access to high-powered microscopes is negligible,” he says. “With superlenses, everybody could be a scientist. People could put their cells on Facebook. It might just inspire society’s scientific soul.”


1. Muhammad I. Aslam and Durdu Ö. Güney, Physical Review B 84, 195465 (2011); DOI: 10.1103/PhysRevB.84.195465

Get All the Laser Focus World News Delivered to Your Inbox

Subscribe to Laser Focus World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now

Most Popular Articles


Understanding Polarization and Optical Coatings

Light is an electromagnetic wave, but, at optical frequencies, it is its electric field that interacts with materials, with the direction of the electric fie...

Wave Optics Simulations

An add-on to COMSOL Multiphysics®, the Wave Optics Module offers capabilities for modeling optical phenomena. The innovative beam envelope method is among th...

Lens Design – Tools for designing manufacturable aspheres for complex optical assemblies

Designing aspheres that may be successfully fabricated and tested can be a frustrating experience. The range of possible aspheres is much larger than the ran...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...
White Papers

High-Power Diode Lasers under External Optical Feedback

We carried out a comprehensive study on single emitters with different antireflection (AR) coatin...

LED Reflector and Lens Simulation using TracePro® Illumination Design and Analysis Software

TracePro® allows users to design, analyze, and optimize LED lighting systems using software simul...

Degradation studies of a VECSEL gain structure using a stable green pump laser

The degradation of the gain structure of a red-emitting Optically Pumped Semiconductor (OPS) Vert...
Technical Digests

Fiber for Fiber Lasers

The development of higher-power and higher-energy fiber lasers has benefited from many advances i...

Click here to have your products listed in the Laser Focus World Buyers Guide.


Synopsys' CODE V Version 10.4 is now generally available

03/30/2012 Synopsys' CODE V Enhances Analysis of Precision Optical Systems.

Scratch-resistant mirror with gold surface

03/12/2012 In the LINOS catalog from Qioptiq you will now find the scratch-resistant mirror with gold surface.
Social Activity
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS