In theory, surface-plasmon-driven superlens looks promising for wideband use

Jan. 10, 2012
Houghton, MI--Durdu Güney, an assistant professor of electrical and computer engineering at Michigan Technological University, has taken a step toward creating a superlens that could use visible light to see objects as small as 100 nm across.

Houghton, MI--Durdu Güney, an assistant professor of electrical and computer engineering at Michigan Technological University, has taken a step toward creating a superlens that could use visible light to see objects as small as 100 nm across.1 The lens would be made of an optical plasmonic metamaterial.

Other researchers have been able to create superlenses that sidestep the diffraction limit, but not throughout the entire visible spectrum. Güney’s model shows how metamaterials might be “stretched” to refract light from the IR through the visible and into the UV.

In the superlens, a thin metal film interacts with a periodic array of nanostructures around it, resulting in a surface-plasmon-driven metamaterial with a double negative refractive index (simultaneous negative permittivity and permeability). Making these superlenses could be relatively inexpensive, possibly even enabling them to find their way into cell phones. But there would be other uses as well, says Güney.

“It could also be applied to lithography," he says. Semiconductor-chip patterns are made using light from UV excimer lasers. “With this superlens," says Güney, "you could use a red laser, like the pointers everyone uses, and have simple, cheap [optical lithography] machines, just by changing the lens.”

What excites Güney the most, however, is that a cheap, accessible superlens could open our collective eyes to worlds previously known only to a very few. “The public’s access to high-powered microscopes is negligible,” he says. “With superlenses, everybody could be a scientist. People could put their cells on Facebook. It might just inspire society’s scientific soul.”

REFERENCE:

1. Muhammad I. Aslam and Durdu Ö. Güney, Physical Review B 84, 195465 (2011); DOI: 10.1103/PhysRevB.84.195465

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Semrock Optical Filters Resources

March 19, 2024
Looking for more information about Semrock optical filters? Explore sets by fluorophore, download the 2023 Semrock catalog and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!