In theory, surface-plasmon-driven superlens looks promising for wideband use

colored_blobs
In an illustration of Durdu Güney's theoretical metamaterial, magnetic fields generated by plasmons are depicted in color. Black arrows show the direction of electrical current in metallic layers; the numbers indicate current loops that contribute to negative refraction. (Image: Michigan Technological University)



Houghton, MI--Durdu Güney, an assistant professor of electrical and computer engineering at Michigan Technological University, has taken a step toward creating a superlens that could use visible light to see objects as small as 100 nm across.1 The lens would be made of an optical plasmonic metamaterial.

Other researchers have been able to create superlenses that sidestep the diffraction limit, but not throughout the entire visible spectrum. Güney’s model shows how metamaterials might be “stretched” to refract light from the IR through the visible and into the UV.

In the superlens, a thin metal film interacts with a periodic array of nanostructures around it, resulting in a surface-plasmon-driven metamaterial with a double negative refractive index (simultaneous negative permittivity and permeability). Making these superlenses could be relatively inexpensive, possibly even enabling them to find their way into cell phones. But there would be other uses as well, says Güney.

“It could also be applied to lithography," he says. Semiconductor-chip patterns are made using light from UV excimer lasers. “With this superlens," says Güney, "you could use a red laser, like the pointers everyone uses, and have simple, cheap [optical lithography] machines, just by changing the lens.”

What excites Güney the most, however, is that a cheap, accessible superlens could open our collective eyes to worlds previously known only to a very few. “The public’s access to high-powered microscopes is negligible,” he says. “With superlenses, everybody could be a scientist. People could put their cells on Facebook. It might just inspire society’s scientific soul.”

REFERENCE:

1. Muhammad I. Aslam and Durdu Ö. Güney, Physical Review B 84, 195465 (2011); DOI: 10.1103/PhysRevB.84.195465




Most Popular Articles

50 YEARS OF GAS LASERS


Durable survivors evolve new forms

Webcasts

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

All About Aspheric Lenses

The most notable benefit of aspheric lenses is their ability to correct for spherical aberration....

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...
Technical Digests

FREEFORM OPTICS: Top-notch capabilities lead to expanded possibilities

The use of free-form aspherical surfaces in an optical system can give it abilities impossible to...

RAMAN SPECTROSCOPY: The technical advances just keep coming

In Raman spectroscopy, light from a laser interacts with a test sample, undergoing a wavelength s...

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS