PC waveguide switches on and off magnetically

March 1, 2010
In a photonic-crystal (PC) waveguide switch developed by scientists at Michigan Technological University, Integrated Photonics, and the Russian Academy of Sciences, the photonic bandgap is controlled magnetically, allowing switching via an external electromagnet.

In a photonic-crystal (PC) waveguide switch developed by scientists at Michigan Technological University (Houghton, MI), Integrated Photonics (Hillsborough, NJ), and the Russian Academy of Sciences (Moscow, Russia), the photonic bandgap is controlled magnetically, allowing switching via an external electromagnet. The PC material contains bismuth, gadolinium, lutetium, iron, and oxygen and is grown on a gadolinium-gallium-garnet substrate.

The waveguide is 1.2 mm long, 2.75 µm thick, and about 5 µm wide with a 200 µm long one-dimensional PC section that has a 343.4 nm grating period and a 700 nm grating depth. Light with a 1550 nm wavelength is coupled into a 900 µm long feeder section connected to the waveguide. Although the waveguide is multimode, about 95% of the input light is coupled into the fundamental mode. The small stress birefringence in the feeder is largely offset by its geometrical birefringence, enabling TE-TM coupling for the fundamental mode (and which is suppressed for higher modes). Switching the magnetization direction rotates the optical polarization, switching the light off or on. Insertion loss for the device is 5.4 dB; the on-to-off transmission ratio is about 9. Contact Miguel Levy at mlevy.mtu.edu.

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!