Nanocrystalline ceramic has the right optical properties for artificial teeth

Glass ceramics produced following a precisely controlled temperature regimen end up with nanocrystals 100 nm in size or less. (Credit: Jan-Peter Kasper/FSU)

Jena, Germany--A glass ceramic with a nanocrystalline structure developed at the Otto-Schott-Institute for Glass Chemistry has both the high strength and the proper optical characteristics for use in dentistry.1 Previous ceramics were not strong enough for dental use and also were not translucent enough, giving the impression of teeth made out of plaster.

Teeth endure a higher stress than any other component of the human body; any ceramic useful for dentures, inlays, or bridges would have to approach the strength of natural tooth enamel. But relatively strong microcystalline ceramics contain crystals large enough to strongly scatter light, giving rise to that unwanted plaster-teeth effect. However, high-density ceramics previously developed by the Jena group for use in computer hard drives can be modified to produce a translucency similar to natural teeth (as well as the proper degree of whiteness).

"We achieve a strength five times higher than with comparable denture ceramics available today," says Christian Rüssel of the Friedrich Schiller University Jena.

To achieve these characteristics, the glass ceramics are produced according to a precisely specified temperature scheme: first the basic materials are melted at about 1500 °C, then cooled down and finely cut up. Then the glass is remelted and cooled down again. Finally, nanocrystals are generated by controlled heating to about 1000 °C. "This procedure determines the crystallization crucial for the strength of the product," says Rüssel. But this was a technical tightrope walk, as too much crystallization produced the plaster effect. The secret of the Jena glass ceramic lies in the fact that the nanocrystals are at most 100 nm in size.


1. M. Dittmer and C. Rüssel, J. Biomed. Mater. Res. B Appl. Biomater. (2011); doi: 10.1002/jbm.b.31972


A long way from the ruby laser

Most Popular Articles


Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...
White Papers

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Optical Isolators Improve Engraving Performance of Pulsed Fiber Lasers

The deleterious effects of back reflections on pulsed fiber lasers used in marking and engraving ...
Technical Digests

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS