U. of Georgia researchers create near-IR phosphor that emits for weeks

persistent_IR_phosphor
Zhengwei Pan and Feng Liu stand in a darkened room lit only by ceramic discs containing a persistent near-IR phosphor. The phosphorescent material was also mixed into the paint that was used to create the University of Georgia logo behind them. (Imaging parameters: auto, ISO 200, 3-4 seconds of exposure time using a night-vision monocular.) Image: Zhengwei Pan/UGA



Athens, GA--While persistent phosphors (glow-in-the-dark materials) for the visible region are everywhere, persistent IR phosphors have been difficult to develop. Now, a group at the University of Georgia has created a near-IR phosphor that has an afterglow of up to two weeks after a one-minute exposure to sunlight.1 The material can be made into paints, all-weather ceramic disks, or even into nanoparticles that bind to cancer cells.

The researchers created a series of chromium-doped zinc gallogermanate phosphors that exhibit strong emission at somewhere between 650 to 1000 nm, with the peak wavelength determined by composition.

"When you bring the material anywhere outside of a building, one minute of exposure to light can create a 360-hour release of near-IR light," says Zhengwei Pan, one of the researchers. "It can be activated by indoor fluorescent lighting as well, and it has many possible applications."

The time period of light emission for the trivalent chromium ion used in the emitter is normally short, typically on the order of a few milliseconds. The innovation in Pan's material is that its chemical structure creates a labyrinth of traps that capture excitation energy and store it for an extended period. As the stored energy is thermally released back to the chromium ions at room temperature, the compound persistently emits near-IR light.

Pan and researchers Feng Liu and Yi-Ying Lu spent three years developing the material. Initial versions emitted light for minutes, but the researchers extended this time to days, and finally to weeks. "Even now, we don't think we've found the best compound," Pan says. "We will continuously tune the parameters so that we may find a much better one."

The researchers placed the material in fresh water, salt water, and even a corrosive bleach solution for three months and found no decrease in performance.

In addition to exploring biomedical applications, Pan's team aims to use it to collect, store, and convert solar energy. "This material has an extraordinary ability to capture and store energy," Pan says, "so this means that it is a good candidate for making solar cells significantly more efficient."


REFERENCE:

1. Zhengwei Pan et al., Nature Materials, published online 20 November 2011; doi:10.1038/nmat3173.





Most Popular Articles

50 YEARS OF GAS LASERS


Durable survivors evolve new forms

Webcasts

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

All About Aspheric Lenses

The most notable benefit of aspheric lenses is their ability to correct for spherical aberration....

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...
Technical Digests

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS