Illumination consumes no electricity

May 1, 2007
While bright, long-duration phosphorescence has been achieved in the violet-to-green wavelength range with rare-earth-doped strontium aluminum oxides, attempts to achieve orange-to-red phosphorescence using various metal-doped oxides have produced results inferior in brightness and afterglow duration.

While bright, long-duration phosphorescence has been achieved in the violet-to-green wavelength range with rare-earth-doped strontium aluminum oxides, attempts to achieve orange-to-red phosphorescence using various metal-doped oxides have produced results inferior in brightness and afterglow duration. But researchers at Ryukoku University (Otsu, Japan) have demonstrated conversion of weak phosphorescence to efficient strong fluorescence of a different color using a different approach-downconversion of organic dyes-and have now fabricated acrylic resins that yield bright illumination across the entire visible spectral range without consuming electricity.

Click here to enlarge image

To fabricate the resins, phosphor particles and dye molecules were suspended in a photocurable acrylate matrix and solidified. Depending upon the phosphor and dye molecule concentrations, emission of color across the visible spectrum could be obtained after exposure to a white-light source. Upon removal of the light source, illumination decayed from approximately 1 nW/mm2 to around 0.01 nW/mm2 after one hour. Optical power of the red emission-obtained by mixing blue and green phosphors with red organic dye-measured 90 minutes after the excitation source was turned off was found to be seven times higher than that of conventional red phosphors. Contact Mitsunori Saito at [email protected].

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!