Optically driven nanomechanical resonators could become nonvolatile memory devices

yale_nanomechanical

(Image: Yale University)


New Haven, CT--Nanoscale optomechanical resonators developed by engineers at the Yale School of Engineering and Applied Science operate at much higher amplitudes than previously thought.1 The slightly buckled resonators, cooled to their quantum ground states (an achievement in itself), take one of two stable buckled configurations; the coupling to an optical cavity generates enough phonons (mechanical waves akin to sound waves) to overcome the energy barrier and flip the resonators to their other state.

Such manipulations allow the Yale researchers to observe evidence for theoretical predictions, such as nanomechanical "slow-downs" and a zero-frequency singularity (oddity). Able to be flipped from one state to the other, the device also has potential to serve as a nonvolatile nano-optomechanical memory. Oscillation amplitudes are in the hundreds of nanometers, and frequencies are in the megahertz range.

The operating principle is similar to laser cooling techniques used in atomic physics. “One can control the motion of a mechanical structure, amplify or cool its vibrations, just by controlling the wavelength of laser light,” said Mahmood Bagheri, one of the researchers.

Among other benefits, optomechanical memory devices can withstand harsher environments than electronic or magnetic memory devices without losing data. Future technologies containing similar high-amplitude optomechanical resonators might be less sensitive to environmental conditions, such as variations in temperature and radiation. At the same time, high-amplitude resonators might enable more accurate and robust measuring devices.



REFERENCE:

1. Mahmood Bagheri et al., Nature Nanotechnology (2011); published online 23 October 2011; doi:10.1038/nnano.2011.180.





Most Popular Articles

50 YEARS OF GAS LASERS


Durable survivors evolve new forms

Webcasts

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

All About Aspheric Lenses

The most notable benefit of aspheric lenses is their ability to correct for spherical aberration....

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...
Technical Digests

FREEFORM OPTICS: Top-notch capabilities lead to expanded possibilities

The use of free-form aspherical surfaces in an optical system can give it abilities impossible to...

RAMAN SPECTROSCOPY: The technical advances just keep coming

In Raman spectroscopy, light from a laser interacts with a test sample, undergoing a wavelength s...

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS