Imaging performance test method from NIST uses realistic hyperspectral scenes

Gaithersburg, MD--Scientists and engineers developing imaging instruments and cameras face a daunting task when evaluating the imaging performance of these devices. In response, the National Institute of Standards and Technology (NIST) has developed the Hyperspectral Image Projector, or HIP, to enable performance evaluation of cameras and other imaging instruments using realistic scenes. The purpose of HIP is to project hyperspectral images into sensors, simulating realistic scenes both spectrally and spatially, for performance testing and evaluation of the sensor instruments in the laboratory. For example, NIST says that using HIP to test satellite-sensor performance in a controlled laboratory setting alleviates expensive field testing, allow better separation of environmental effects from instrument effects, and enables system-level performance testing and validation of space-flight instruments prior to launch.

The HIP system's design is similar to commercially available digital light processing (DLP) projection systems in which the projected image is made from a composite of grayscale images representing each of the RGB colors. The individual grayscale images are generated by focusing light through a rotating multicolored filter to obtain the spectral component and illuminating a digital micromirror device to obtain the spatial component. When the grayscale images are projected and combined at typical video frame rates, the result is a full RGB color image.

In contrast to the DLP system, the HIP system can project composites of numerous spectra. Instead of using a filter, the HIP system's spectral components are generated with a spectral engine composed of dispersive optics and a spatial light modulator such as a digital micromirror device or a liquid-crystal spatial light modulator. The spatial engine, composed of a second spatial light modulator, then determines the spatial component for each spectral component. Synchronized operation of both engines ensures that each spectral component is projected sequentially in the correct proportions in each spatial region to create a time-averaged hyperspectral image.

The advantage of the HIP system is not only its ability to project realistic, spectrally, and spatially complex scenes, but also the user's ability to arbitrarily define and control the spectral distributions at each spatial image pixel. For example, the HIP can alter certain spectral components to reflect changing scenes. This means that HIP can be used to test imagers under a wide range of conditions and for a variety of applications.

In a recent demonstration of the HIP process, an image of a coral reef acquired by an airborne hyperspectral sensor was deconvolved into six spectral components and then re-projected using the HIP into a laboratory imaging spectrometer (see image). This produced an RGB version of the original image and the HIP-projected image. The NIST research, performed with the HIP operating in the visible spectrum, served to prove the concept. NIST and its collaborators are continuing to develop the HIP by extending the spectral range into the IR and UV, increasing the spectral resolution and brightness, and enabling the showing of dynamic scenes such as hyperspectral image movies.

SOURCE: SPIE Newsroom; http://spie.org/x57013.xml?ArticleID=x57013

IMAGE: Original image of a coral reef and the HIP-projected image measured by a remote-sensing imager in lab testing. (Courtesy NIST)

 

 

NIST hyperspectral HIP image sensor test method

Most Popular Articles

Webcasts

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...

Infinite Possibilities – Easily Combining Scanner and Servo Motion

High precision motion control applications such as laser micromachining, 2-photon polymerization, glass panel and film patterning, and additive manufacturing...

Solutions in Search of Problems: What Spectroscopy Can Do for You

Spectroscopy is so pervasive that most of us take it for granted. We use it for routine laboratory and test measurements without appreciating how those same ...

Technical Digests

HIGH-ENERGY LASER COATINGS: Eliminating laser damage proactively

High-power and high-energy thin-film antireflection coatings for laser optics require careful des...
Sponsored by

LIBS -- spectroscopy for remote identification of materials

Laser-induced-breakdown spectroscopy (LIBS) uses a pulsed laser to vaporize a small sample of a s...
Sponsored by

Laser Tools for Materials Processing

Laser materials processing requires not only the appropriate industrial laser system, but also a ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

Phantom v1610

Phantom v1610 high-speed digital camera can shoot 1 million FPS.

Phantom v711

Phantom v711 high-speed digital camera

Evolve 128 EMCCD Camera

Quantitative high performance with extreme sensitivity for low-light applications.

RELATED COMPANIES

Surface Optics Corp

Designs and manufactures hyperspectral and multispectral imagers operating from the ult...

Optics Balzers AG

Possesses comprehensive know-how in optical thin-film coatings and components, glass pr...

Cremat Inc

Manufactures and supplies charge-sensitive preamplifiers for use in nuclear and x-ray d...

Social Activity

  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS