Microresonator optical gyroscope operates via Brillouin laser cascade

April 10, 2017
Researchers have developed a chip-based laser gyroscope that uses counterpropagating Brillouin lasers and measures rotation as a Sagnac-induced frequency shift.
Content Dam Lfw Print Articles 2017 04 1704lfw Nb F4

Laser gyroscopes lie at the heart of many precision commercial and military inertial-navigation systems. Because conventional laser gyroscopes, which are based on either a fiber-optic coil or a free-space ring cavity, are bulky, attempts have been made to produce micro-optical laser gyroscopes. Now, researchers at the California Institute of Technology (Caltech; Pasadena, CA) have developed a chip-based laser gyroscope that uses counterpropagating Brillouin lasers and measures rotation as a Sagnac-induced frequency shift. The first prototype has demonstrated a rotation-rate measurement 40 times greater than that of previous micro-optical laser gyroscopes.

An 18-mm-diameter high-Q disk microresonator made of silica on a silicon chip is excited by a single laser pump wave, which induces a first Stokes wave that, at high-enough power, pumps a second Brillouin Stokes wave that propagates in the opposite direction, inducing another Stokes wave, and so on, resulting in a Brillouin laser cascade. The researchers tested the gyro by applying a sinusoidal rotation with an angular amplitude of 0.14°. A sensitivity of 15 deg/h/(Hz)0.5 and a minimum root-mean-squared rotation rate of 6.3 × 10-3 deg/s (or 22 deg/h) were measured. Narrowing the linewidth of the Brillouin lasers should improve the gyro's sensitivity further. Reference: J. Li et al., Optica (2017); https://doi.org/10.1364/optica.4.000346.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!