Laser-induced nanobubbles kill cancer cells

March 1, 2010
When short laser pulses strike gold nanoparticles, nanobubbles form–and Rice University (Houston, TX) scientists have found that they can tune the lasers to create either small, bright bubbles that are visible but harmless, or large bubbles that burst cells.

When short laser pulses strike gold nanoparticles, nanobubbles form–and Rice University (Houston, TX) scientists have found that they can tune the lasers to create either small, bright bubbles that are visible but harmless, or large bubbles that burst cells.

In laboratory studies published last year, Rice physicist Dmitri Lapotko and colleagues at the Laboratory for Laser Cytotechnologies at the A.V. Lykov Heat and Mass Transfer Institute (Minsk, Belarus), used them to blast through arterial plaque. "The bubbles work like a jackhammer," Lapotko said.

Dmitri Lapotko and Jason Hafner (left to right) use lasers to create cell-bursting nanobubbles (photo courtesy Jeff Fitlow/Rice University).

Now, Lapotko and Rice professor Jason Hafner have tested the bubbles on leukemia cells and cells from head and neck cancers. They attached antibodies to the nanoparticles in order to target only cancer cells, and found the technique was effective at locating and killing them. The work is described in the February 26, 2010 issue of Nanotechnology.

The technology could be used for "theranostics," a single process that combines diagnosis and therapy. In addition, because the nanobubbles show up on microscopes in real time, the technique can be use for post-therapeutic assessment.

More Brand Name Current Issue Articles
More Brand Name Archives Issue Articles

Sponsored Recommendations

Case Study – Large OAP Mirrors

Dec. 4, 2023
Customized Large Optics by Avantier: Meeting Unique Needs with Precision and Quality In the ever-evolving world of optical technology, the demand for customized large optics ...

Next-level virus detection via WIDE-MIP microscopy

Dec. 4, 2023
Rapid and accurate detection of a virus can quite literally make the difference between life and death. With this in mind, researchers created a mid-infrared photothermal microscope...

Flexible, Thixotropic, One Component Dual Cure Epoxy

Dec. 1, 2023
Master Bond UV23FLDC-80TK is a moderate viscosity, cationic type system that offers both UV light and heat curing mechanisms. It cures readily within 20-30 seconds when exposed...

MRF Polishing

Dec. 1, 2023
Welcome to Avantier, your esteemed partner in optical solutions for over five decades. With a legacy of expert knowledge, we invite you to delve into the realm of precision optics...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!