Surface acoustic waves profiled by stroboscopic white-light interferometry

April 27, 2015
Surface acoustic waves (SAWs) are used by certain electronic components in mobile phones and other devices as compact filters.
1505lfw Nb F4 Web
1505lfw Nb F4 Web
1505lfw Nb F4 Web
1505lfw Nb F4 Web
1505lfw Nb F4 Web

Surface acoustic waves (SAWs) are used by certain electronic components in mobile phones and other devices as compact filters. SAWs are generated by piezoelectric materials that operate at frequencies in the several-tens-of-megahertz to the low gigahertz range, and produce typical maximum amplitudes of a few nanometers or less. Characterizing SAWs via scanning-laser interferometry has been the conventional optical measurement approach, but an alternate technique, stroboscopic white-light interferometry (SWLI), has the advantage of being able to “freeze” vibrational motion if the illumination is synchronized to the excitation frequency of the device. However, SWLI has traditionally been limited to frequencies of a few megahertz, as well as vibrations on the order of a micrometer. Now, a group at Aalto University (Aalto, Finland) has experimentally proven a high-frequency, low-amplitude SWLI setup that can produce 3D quantitative spatial maps of SAWs.

The setup relies on a “home-built” supercontinuum white-light source in which 50 ps full-width-half-maximum (FWHM) light pulses from a laser diode are amplified in a two-stage amplifier to kilowatt-level peak powers at a 1064 nm wavelength. Part of that light is frequency-doubled by a KTP nonlinear crystal and both the 1064 and 532 nm light sent into a microstructured optical fiber to produce the supercontinuum. A 40 nm bandpass filter optimizes the spectrum of the resulting pulses for the Michelson-type interferometer. Pulse lengths were measured to be shorter than 310 ps, limited by the temporal response of the photodetector. The system was used to measure the vibration fields on a 73.728 MHz SAW device, measuring at the 72nd subharmonic to lower the optical power hitting the sample. The approximately 3-nm-amplitude SAW standing waves with an average wavelength of about 50 μm were accurately measured to a resolution of better than 100 ps. Reference: K. Kokkonen et al., Opt. Express (Apr. 20, 2015); doi:10.1364/OE.23.009690.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Semrock Optical Filters Resources

March 19, 2024
Looking for more information about Semrock optical filters? Explore sets by fluorophore, download the 2023 Semrock catalog and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!