Multicore optical fibers could be next-gen PON solution

Jan. 1, 2012
The number of optical fibers needed for access networks using passive optical network (PON) architectures is increasing demand for high-density fiber cables. An interesting solution to this congestion could be multicore fibers from OFS Laboratories.

The number of optical fibers needed for access networks using passive optical network (PON) architectures is increasing demand for high-density fiber cables. An interesting solution to this congestion could be multicore fibers from OFS Laboratories (Somerset, NJ). With an outer-glass cladding diameter of 130 μm (slightly larger than conventional 125-μm-cladding-diameter communications fiber), a fiber containing seven individual cores has successfully transmitted seven upstream 1310 nm and seven downstream 1490 nm signals at 2.5 Gbit/s, each over distances of 11.3 km.

Designed for singlemode operation, the fiber has seven 8-μm-diameter fiber cores arranged in a 38 μm core-to-core pitch hexagonal array. The 130 μm clad fiber is acrylate-coated to a final outside diameter of 250 μm. Attenuation for the center core is 0.39/0.30 dB/km at 1310/1490 nm, and average attenuation for the six outer cores is 0.41/0.53 dB/km at 1310/1490 nm. Maximum crosstalk—an extremely important parameter for data transmission—is less than -38/-24 dB at 1310/1490 nm, more than adequate to meet PON requirements. To couple the multicore fiber to seven individual fibers, a special tapered multicore-fiber connector was developed by tapering and fusing the fibers to a dimension that matches the multicore fiber structure, achieving average splice loss values of 0.10 dB, comparable to conventional singlecore fibers. Contact Benyuan Zhu at [email protected].

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!