Silicon-on-sapphire ring resonators operate at a 5.5 μm wavelength

Feb. 1, 2011
Researchers at the University of Washington and Cornell University have created the first silicon-waveguide ring resonators for wavelengths between 5.4 and 5.6 μm.

Researchers at the University of Washington (Seattle, WA) and Cornell University (Ithaca, NY) have created the first silicon-waveguide ring resonators for wavelengths between 5.4 and 5.6 μm, opening up a new region for ring-resonator applications such as biosensing and modulation. The resonators, as well as ridge waveguides, were fabricated on a silicon-on-sapphire (SOS) substrate.

The chip was patterned using electron-beam lithography and contained various ridge waveguides and ring resonators. Waveguides with a height of 0.6 μm and varying widths were fabricated; as predicted, a 1.8 μm wide waveguide properly channeled the fundamental mode of linearly polarized light at a 5.5 μm wavelength. The measured loss of the ridge waveguide was 4.0 ± 0.7 dB/cm at laser powers ranging from 6 to 100 mW (with an insertion loss of 25 dB), indicating minimal nonlinear loss. The ring resonators had various radii and edge-to-edge spacings; a sample ring had a 40 μm radius and a 0.25 μm edge-to-edge spacing, and exhibited a cavity Q factor of 3000, a free spectral range of 29.7 nm, and an associated group index of 3.99. Optimizing the drop port should boost the Q closer to its theoretical value of 25,000. Contact Alexander Spott at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!