Light within turbid zinc oxide is optimally focused

Feb. 1, 2010
In turbid materials (which scatter light due to spatial variations in refractive index), a converging wavefront that would come to a sharp focus in free space is obviously prevented from doing so.

In turbid materials (which scatter light due to spatial variations in refractive index), a converging wavefront that would come to a sharp focus in free space is obviously prevented from doing so. However, if a phase-based spatial-light modulator is placed in the light beam and adjusted via a digital feedback system, a focus can be created deep inside the turbid medium. In fact, because the scattered light reaches the focus with a numerical aperture (NA) greater than that of the input beam, the focal spot can be made smaller than that which would occur in free space—a result potentially important for imaging inside turbid materials such as biological tissue.

Now, researchers at the University of Twente (Enschede, The Netherlands) and the FOM Institute for Atomic and Molecular Physics (Amsterdam, The Netherlands) have experimentally demonstrated this effect. Using zinc oxide (an extreme scatterer with a mean free path of 0.7 µm) ranging from 7.5 to 25 µm thick with a few dyed fluorescent polystyrene nanospheres (with radii of either 80 nm or 150 nm) embedded in it as local intensity probes, they showed that linearly polarized 532 nm light at an incoming NA of 0.95 could be focused to an area (which they examined using an objective with a 1.49 NA) having only 68% of the normally smallest spot area. Contact Elbert van Putten at [email protected].

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!