New design method eliminates guesswork when optics go freeform

May 18, 2018
Analysis predicts whether freeform surfaces in a preliminary optical layout will work well, and if so, which freeform surfaces should be used for maximum effect.

Lenses and mirrors with freeform surfaces enable optical designers to create, for some purposes, optical devices that are lighter, more compact, and more effective than conventional designs using spherical or even rotationally symmetric aspherical optics.

However, until now, determining which freeform surfaces will work best (if at all) in a given optical configuration has been a time-consuming and often expensive process of trial and error.

Now, in a paper in Nature Communications, lead author Aaron Bauer, a senior research engineer at the University of Rochester's Center for Freeform Optics (CeFO), combines theory and practice in a step-by-step method that eliminates much of the guesswork.1

"Aaron has developed a process to design with freeform surfaces that can be applied very generally," says coauthor Jannick Rolland, CeFO director and Brian F. Thompson Professor of Optical Engineering. "It's really beautiful, and even at times feels like magic."

She believes the findings will help accelerate the adoption of freeform optics in industry. "People will no longer say 'Oh, it's too expensive to build with freeform optics,'" she says. "Because now you can make something that may cost a tenth of what it would have cost otherwise."

Laying the groundwork

Traditionally, optical designers have relied on rotationally symmetric optical surfaces in their designs, because their design and manufacture is relatively straightforward. Within the last 20 years, advances in high-speed micromilling, computer-controlled lens polishing, and ion-beam etching, among other technologies, have made asymmetric freeform surfaces more feasible.

In a paper in 2014, Kyle Fuerschbach, a former member of the Rolland Lab, laid the theoretical framework for freeform aberrations theory. "But we still didn’t have a systematic process to design with that theory," Rolland says.

Bauer, in the meantime, was working alongside Fuerschbach, designing a head-worn display using freeform surfaces.

"I noticed that there were very common patterns of aberrations that were always popping up, and limiting my system from going any further," Bauer says. Moreover, "those patterns of aberration matched the ones that Kyle predicted would be corrected by freeform surfaces. So, I put two and two together."

The method he came up with starts with the initial folding geometry (alignment of mirrors and lenses) contemplated for a design, and then, based on an analysis of the various aberrations produced by that alignment, predicts whether freeform surfaces could minimize those aberrations and, if so, which freeform surfaces should be used for maximum effect.

"Freeform surfaces are not a universal solution for correcting every aberration," Bauer notes. "So, what our method does is to allow designers to analyze all of these geometries ahead of time, in order to predict whether or not there would be a good solution."

That's far better than the brute-force approach where "people heuristically try various freeform surfaces into a design," Rolland says. "Even if it eventually works, you could end up with a system where the departure of the surfaces are much larger than they would be otherwise, because all those freeform surfaces may be fighting each other. And if it does not work, there is nowhere go as a designer."

By using Bauer's method instead, she says, "you will be able to design something that is a lot simpler, and that will be easier to manufacture and test. Furthermore, the method will quickly and unequivocally provide insight into why a given geometry might be intrinsically limited, which is essential for designers."

Eric Schiesser, a PhD student in the Rolland lab, also contributed to the paper.

Source: http://www.rochester.edu/newscenter/freeform-optics-new-method-lenses-316222/

REFERENCE:

1. Aaron Bauer et al., Nature Communications (2018); doi: 10.1038/s41467-018-04186-9.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!