University of Glasgow physicists make less-expensive radially polarized beams

March 1, 2016
University of Glasgow physicists are using glass cones to create less-expensive radially polarized light for multiple applications.

University of Glasgow (Glasgow, Scotland) physicists Neal Radwell and Sonja Franke-Arnold have discovered a new way of producing radially polarized beams using broadband white light (rather than single-frequency beams) by reflecting the light from a glass cone. If white light with a uniform polarization across the whole beam is reflected back from a small glass cone, the light becomes an optical vortex, for example, with polarization always pointing to the center. Such light can be focused on a much smaller scale than was previously thought possible.

RELATED ARTICLE: Radial-polarization interferometer tops Michelson capabilities

The breakthrough could be useful in microscopy, as it enables scientists to record images with a much better resolution, and also in astronomy, where so-called vortex coronagraphs can be used to see faint objects from light years away that are normally obscured by near very bright stars.

Radwell, lead author on the report entitled "Achromatic vector vortex beams from a glass cone," published in Nature Communications, said, "Scientists can make these kind of beams already but we have found the first way of making radial polarisation using white lightlight that contains all different coloursrather than lasers and light of a very particular frequency. What we have proved is not that you can focus these beams better, that has been shown before, but we have found a new way to make those beams."

Franke-Arnold, who devised the glass cone technology, said, "What is incredible to us is that such interesting physics has come from something so simple. Previously people have been using nano-fabricated devices, which are extremely expensive, but we have come up with a new mechanism to create polarisation structures which could be really useful for future applications, as it is incredibly cheap, easy to operate and robust."

Until now scientists using radially polarised beams have tended to use single frequency light. But now scientists can use white light reflected from the glass cones, enabling them to focus on extremely small spots, far smaller than was conventionally thought to be possible, and create images with a much higher resolution.

Franke-Arnold added, "The structure of these special light beams is directly linked to the geometry of the glass cones. This makes them very stable and means that we can work over large frequencies. We believe the polarisation structures we get are cleaner than any you can get elsewhere."

SOURCE: University of Glasgow; http://www.gla.ac.uk/research/news/headline_442537_en.html

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!