Graphene solar cell from University of Florida reaches record efficiency

May 25, 2012
Gainesville, FL--The University of Florida says that doping was key in getting unprecedented power conversion efficiency from a new graphene solar cell they created.

Gainesville, FL--Researchers in the University of Florida's (UF) physics department say that doping was key in getting unprecedented power conversion efficiency (PCE) from a new graphene solar cell created in their lab. Although previous attempts to use graphene--a single-atom-thick honeycomb lattice of carbon atoms--in solar cells have only managed PCE values up to 2.9%, the UF team was able to achieve a record breaking 8.6% with their device by doping the graphene device with trifluoromethanesulfonyl-amide, or TFSA. Their results are published in the online edition of Nano Letters.

"The dopant makes the graphene film more conductive and increases the electric field potential inside the cell," said Xiaochang Miao, a graduate student in the physics department. That makes it more efficient at converting sunlight into electricity. And unlike other dopants that have been tried in the past, TFSA is stable--its effects are long lasting.

When graphene and silicon come together, they form a Schottky junction and when illuminated with light, act as a power conversion zone for an entire class of solar cells. Schottky junctions are commonly formed by layering a metal on top of a semiconductor. But researchers at the UF Nanoscience Institute for Medical and Engineering Technologies discovered in 2011 that graphene, a semi-metal, made a suitable substitute for metal in creating the junction.

"Graphene, unlike conventional metals, is transparent and flexible, so it has great potential to be an important component in the kind of solar cells we hope to see incorporated into building exteriors and other materials in the future," said Arthur Hebard, distinguished professor of physics at UF and co-author on the paper. "Showing that its power-converting capabilities can be enhanced by such a simple, inexpensive treatment bodes well for its future."

The prototype solar cell created in the UF lab was built on a rigid base of silicon, which is not considered an economical material for mass production. But Hebard said that he sees real possibilities for combining the use of doped graphene with less expensive, more flexible substrates like the polymer sheets currently under development in research laboratories around the world.

SOURCE: University of Florida;http://news.ufl.edu/2012/05/24/solar-efficiency/

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Semrock Optical Filters Resources

March 19, 2024
Looking for more information about Semrock optical filters? Explore sets by fluorophore, download the 2023 Semrock catalog and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!