Rensselaer researchers increase green LED output with nanoscale pattern

April 29, 2011
Troy, NY--A new manufacturing method for green-colored LEDs with greatly enhanced light output has been developed by researchers at Rensselaer Polytechnic Institute.

Troy, NY--A new manufacturing method for green-colored light-emitting diodes (LEDs) with greatly enhanced light output has been developed by researchers at Rensselaer Polytechnic Institute. The Rensellaer research team, led by Christian Wetzel, professor of physics and the Wellfleet Constellation Professor of Future Chips at Rensselaer, etched a nanoscale pattern at the interface between the LED’s sapphire base and the layer of gallium nitride (GaN) that gives the LED its green color. Overall, the new technique results in green LEDs with significant enhancements in light extraction, internal efficiency, and light output.

"Green LEDs are proving much more challenging to create than academia and industry ever imagined," Wetzel said. "Every computer monitor and television produces its picture by using red, blue, and green. We already have powerful, inexpensive red and blue LEDs. Once we develop a similar green LED, it should lead to a new generation of high-performance, energy-efficient display and illumination devices. This new research finding is an important step in the right direction."

Sapphire is among the least expensive and widely used substrate materials for manufacturing LEDs, so Wetzel’s discovery could hold important implications for the rapidly growing, fast-changing LED industry. He said this new method should also be able to increase the light output of red and blue LEDs.

Results of the study, titled "Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire," were published in Applied Physics Letters, and are featured in the Virtual Journal of Nanoscale Science & Technology (see http://dx.doi.org/10.1063/1.3579255).

The research program is supported by the U.S. Department of Energy National Energy Technology Laboratory (NETL) Solid-State Lighting Contract of Directed Research, and the National Science Foundation (NSF) Smart Lighting Engineering Research Center (ERC), which is led by Rensselaer.

SOURCE: Rensselaer Polytechnic Institute; http://news.rpi.edu/update.do?artcenterkey=2860&setappvar=page(1)

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!