NRL begins field tests of laser acoustic propagation

Jan. 14, 2011
A research team at the U.S. Naval Research Lab led by physicist Ted Jones performed the first successful long-distance acoustic-propagation and shock-generation demonstration of their novel underwater photo-ionization laser acoustic source.

Washington, DC--A research team at the U.S. Naval Research Laboratory (NRL) led by physicist Ted Jones performed the first successful long-distance acoustic-propagation and shock-generation demonstration of their novel underwater photo-ionization laser acoustic source. These tests, performed at the Lake Glendora Test Facility of Naval Surface Warfare Center-Crane (Crane, IN), expanded on their earlier laboratory research on pulsed-laser propagation through the atmosphere.

Using a pulsed Nd:YAG 532-nm-wavelength laser housed in a floating platform, pulses were directed by steering mirrors down through a focusing lens and at the water surface. Each laser pulse produced an acoustic pulse with a sound-pressure level of approximately 190 dB, which was detected and measured by boat-mounted hydrophones at distances up to 140 m away. Prior laboratory acoustic-propagation distances were limited to about 3 m.

"The goal of this laser acoustic-source development is to enable efficient remote acoustic generation from compact airborne and ship-borne lasers, without the need for any source hardware in the water," said Jones. "This new acoustic source has the potential to expand and improve both Naval and commercial underwater acoustic applications."

The driving laser pulse has the ability to travel through both air and water, so that a compact laser on either an underwater or airborne platform can be used for remote acoustic generation. A properly tailored laser pulse has the ability to travel many hundreds of meters through air, remaining relatively unchanged, then quickly compress upon entry into the water. Atmospheric laser propagation is useful for applications in which airborne lasers produce underwater acoustic signals without any required hardware in the water, a highly useful and efficient tool for undersea communications from aircraft.

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free!

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!