QUANTUM-RING LASERS: Whispering-cave-mode lasers emit in blue-violet

March 1, 2008
Lord Rayleigh wrote about the two-dimensional whispering gallery mode (WGM) in 1910 after a visit to the dome of St. Paul’s cathedral in London.
(Courtesy of Odae Kwon, POSTECH)
A blue photonic-quantum-ring laser showcases 3-D whispering-cave-mode emission with ultralow threshold current less than that of VCSELs or LEDs.
A blue photonic-quantum-ring laser showcases 3-D whispering-cave-mode emission with ultralow threshold current less than that of VCSELs or LEDs.

Lord Rayleigh wrote about the two-dimensional whispering gallery mode (WGM) in 1910 after a visit to the dome of St. Paul’s cathedral in London. The whispering cave mode (WCM) is a three-dimensional (3-D) effecta toroid with circular helix symmetrywhich recent studies have shown can be used to create photonic-quantum-ring (PQR) lasers that emit in the blue-violet part of the spectrum.1

A research team at Pohang University of Science and Technology (POSTECH, Pohang, Korea) first created 3-D WCM lasers that emit in the infrared and red part of the spectrum. To achieve this, professor O’Dae Kwon and his group stacked mesas of vertically reflecting distributed-Bragg-reflector (DBR) structures above and below a few active 80 Å gallium arsenide and gallium indium phosphide quantum wells. The resulting 3-D WCM laser of photonic quantum rings avoided the problem of in-plane light spreading found in 2-D WGM lasers, and generated a doughnut-like band of 3-D helical modes. One such photonic-quantum-ring device 15 µm in diameter featured an ultralow threshold current of 11.5 µA, about a thousandth of that needed for vertical-cavity surface-emitting lasers (VCSELs) of the same diameter. These multimode devices emitted around a central wavelength of 848 nm, exhibiting increasing threshold current and decreasing linewidth with larger device diameter. The team observed the narrowest linewidth with an optical spectrum analyzer to date from a 10 µm PQR of 0.55 Å at an injection current of 800 µA.

The next iterations of the infrared PQR device involved single-mode electrically pumped lasers made of a hyperboloid drum shape only 0.9 µm across. These devices exhibited a linewidth of 0.46 Å at 838.5 µm, and a tiny threshold current of 300 nA, the smallest ever observed among quantum-well, wire, or dot-type lasers. Although the external quantum efficiency suffered from soft lasing turn-on behavior, the emission efficiency of the PQR laser was very highmore favorable than that of light-emitting diodes (LEDs). Such lasers could be used to replace LEDs in high-end displays in the near future.

The researchers then used various vertical gallium nitride (GaN) structures to extend their PQR work to blue wavelengths from 420 to 470 nm (see figure). In one version, a “reverse-mesa” approach with microholes etched in the vertical-quantum-well structure enabled unexpected “convex whispering-gallery” lasing via gain-guiding effects. This “weird” laser also exhibited very low quantum-ring-like thresholds (6 µA per pixel for 256 × 256 arrays, and 0.3 µA per pixel for megapixel arrays at room temperature) and surface-normal dominant multimode emissions. The hole lasers are easily fabricated, readily scalable, and, says Kwon, may become sought-after for next-generation interconnects or nanobioengineering for their potential to anchor submicron fibers.

“In general,” said Kwon, “the blue laser has been like a ‘holy grail’it has been very difficult to achieve surface-normal lasing. Existing blue photonic-crystal laser diodes still require relatively high current. The new blue PQR achieves surface-normal lasing easily, even with the modest design of less than 95% to 70% vertical-pair reflection, thanks to the unique 3-D helix WCM phenomena. And its ultralow threshold implies it can outperform LEDs while overcoming the thermal and material problems of the LED.”

Future challenges associated with 3-D WCM PQR lasers include studies of 3-D device theory and simulations, angular moment studies, understanding of carrier-photon interactions, and chaotic dynamics research on modified structures.

REFERENCE

1. O. Kwon et al., Proc. SPIE Photonics West, 6872, (2008).

About the Author

Valerie Coffey-Rosich | Contributing Editor

Valerie Coffey-Rosich is a freelance science and technology writer and editor and a contributing editor for Laser Focus World; she previously served as an Associate Technical Editor (2000-2003) and a Senior Technical Editor (2007-2008) for Laser Focus World.

Valerie holds a BS in physics from the University of Nevada, Reno, and an MA in astronomy from Boston University. She specializes in editing and writing about optics, photonics, astronomy, and physics in academic, reference, and business-to-business publications. In addition to Laser Focus World, her work has appeared online and in print for clients such as the American Institute of Physics, American Heritage Dictionary, BioPhotonics, Encyclopedia Britannica, EuroPhotonics, the Optical Society of America, Photonics Focus, Photonics Spectra, Sky & Telescope, and many others. She is based in Palm Springs, California. 

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!