PV module concentrates sunlight, lets light through for windows

June 1, 2011
A see-through photovoltaic (PV) module for window-integrated use developed at the Nagaoka University of Technology (Niigata, Japan) contains a low-concentration prism concentrator that allows direct solar radiation to be focused onto PV solar cells while diffuse solar radiation is transmitted to a building's interior.

A see-through photovoltaic (PV) module for window-integrated use developed at the Nagaoka University of Technology (Niigata, Japan) contains a low-concentration prism concentrator that allows direct solar radiation to be focused onto PV solar cells while diffuse solar radiation is transmitted to a building’s interior. The arrangement is efficient because direct solar radiation is (on sunny days) far more intense than diffuse solar radiation. The geometry and tilt are set such that the device functions without adjustment for a large part of the yearly sun path.

The prisms concentrate light via total internal reflection, which fails (due to the geometry) for most diffuse sunlight angles. After ray-trace modeling, the team constructed a test module with acrylic-resin prisms and single-crystalline silicon PV cells. The cell area was 57.5% of the total module area; the device was tested against a conventional module. A pyranometer measured the broadband solar irradiance incidence on the modules, and a pyrheliometer measured the direct normal incidence; the diffuse component of the solar irradiation was the difference between the two. The test module generated 1.15 times more electrical power than the conventional module, using only 63% of the cell area. The test module’s generation was twice that of the control per amount of light absorbed. Contact Noboru Yamada at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!