Plasmonic lens increases photodetection capability

April 1, 2009
Researchers at Drexel University (Philadelphia, PA) and the Naval Research Laboratory (Washington, D.C.) have increased the photocurrent reaching a metal-semiconductor-metal (MSM) photodiode by applying corrugations to the metal contacts of the device without paying a penalty for its speed of operation.

Researchers at Drexel University (Philadelphia, PA) and the Naval Research Laboratory (Washington, D.C.) have increased the photocurrent reaching a metal-semiconductor-metal (MSM) photodiode by applying corrugations to the metal contacts of the device without paying a penalty for its speed of operation. This grating structure essentially creates a “plasmonic lens” that increases photon collection at the metal/dielectric interface through the creation of surface-plasmon polaritons (SPPs).

To fabricate the lens, grating parameters were optimized according to plasmonic coupling equations, resulting in a corrugation groove-to-pitch ratio of 1/2 and a height of 25 ± 5 nm for gratings fabricated in the gold metal layer using electron-beam lithography. These structures enable photons at the gallium arsenide (GaAs) edge of detection at 830 nm that would otherwise be reflected off of the surface metal of an unpatterned MSM photodetector to be guided as SPPs, increasing the electron-hole-pair generation rate and causing an increase in the GaAs detector responsivity. The MSM photodiode includes a 1 × 30 µm2 GaAs substrate that acts as the aperture of the plasmonic lens. Time-response experiments using an 830 nm, 100 fs Ti:sapphire laser source showed a factor-of-two increase in detector response using the plasmonic lens as compared to an unpatterned MSM photodetector, while maintaining the same speed of response. Simulations predict a factor-of-ten increase for an 855 nm photodiode with optimized grating structures. Contact Bahram Nabet at [email protected].

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!