Tissue Engineering: 3D laser printing of live human cells promising for testing, transplantation

June 1, 2015
A laser forward transfer method for printing living cells provides resolution and cell densities sufficient for tissue formation.

Researchers in Germany have adapted a laser forward transfer method for printing living cells. The approach provides resolution and cell densities sufficient for tissue formation. The technique has been shown to enable production of 3D cell constructs using live human cells, which could obsolete animal testing of chemicals, pharmaceuticals, and cosmetics. Ultimately, it could also allow the manufacture of complete functional replacement organs for transplantation.

Boris Chichkov, Urs Zywietz, and Lothar Koch of Laser Zentrum Hannover e.V. coat a glass slide or transparent ribbon with one layer each of a laser-absorbing material and a biomaterial—typically a hydrogel with embedded cells (see Fig. 1). With the glass slide mounted upside down, they direct 10 ns pulses of 1064 nm laser light through the slide into the absorption layer, which evaporates in the focal spot. The vapor pressure propels the subjacent biomaterial forward and deposits it as a droplet onto a surface under the slide. By moving the slide and the laser beam, they can print any 2D or 3D patterns desired—layer by layer.

The process does not harm cells or affect stem cells' differentiation behavior or potential; in fact, stem cells printed in patterns differentiate within the patterns toward different tissue types (see Fig. 2).1,2 As well, the team observed directed migration of adipose-derived stem cells toward endothelial cells and their interactions in establishing blood vessels.3

To form 3D skin tissue constructs, the team printed fibroblast and keratinocyte cells layer by layer. They have proven skin tissue formation by visualizing intercellular junctions and verifying their functionality,4 and they have observed basal lamina formation. Implanted in mice, the printed skin constructs show an ingrowth of blood vessels and differentiation of the epidermal keratinocytes.5

Next, the team will print bacteria and microorganisms.

REFERENCES

1. L. Koch et al., Tissue Eng. Part C Methods, 16, 5, 847–854 (2010); http://dx.doi.org/10.1089/ten.tec.2009.0397.

2. M. Gruene et al., Biofabrication, 3, 015005 (2011); http://dx.doi.org/10.1088/1758-5082/3/1/015005.

3. M. Gruene et al., Tissue Eng. Part C Methods, 17, 973–982 (2011); http://dx.doi.org/10.1089/ten.tec.2011.0185.

4. L. Koch et al., Biotechnol. Bioeng., 109, 7, 1855–1863 (2012); http://dx.doi.org/10.1002/bit.24455.

5. S. Michael et al., PLoS One, 8, 3, e57741 (2013); http://dx.doi.org/10.1371/journal.pone.0057741.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!