Ambient air can lase

April 1, 2014
Scientists at ENSTA ParisTech/CNRS/Ecole Polytechnique in France have made ambient air lase by pumping it with 800 nm femtosecond laser pulses.

Scientists at ENSTA ParisTech/CNRS/Ecole Polytechnique (Palaiseau, France) have made ambient air lase by pumping it with 800 nm femtosecond laser pulses. The 40-mm-diameter beam from the Enstamobile laser system at Ecole Polytechnique—which produces 50 fs pulses with energies up to 300 mJ—was focused by a 100-cm-focal-length convex lens, producing plasma filaments in air that emit a supercontinuum white light peaking at wavelengths mostly longer than 650 nm. Return light was filtered to remove the IR pump radiation and most of the supercontinuum, and then collected into a fiber spectrometer.

A pulse energy of 13 mJ resulted in a weak laser line appearing at 428 nm; as the pulse energy was increased, the line became stronger and shifted to longer wavelengths. At a pump-pulse peak power of 1.5 TW, the output of the air laser began to saturate. The measured width of the laser line was 1.2 nm, but that was likely limited by the spectrometer; the theoretical linewidth is likely on the order of 0.1 nm. The line is caused by the transition of nitrogen (N2) in the air from its second excited state to the ground state. The optical gain within the filament was estimated to be at least 0.7/cm, and likely much greater. The lasing radiation energy per pulse was about 2.6 μJ, with a conversion efficiency of 3.5 × 10-5. The effect could potentially be used in remote sensing. Contact Yi Liu at yi.liu@ensta‐paristech.fr.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!