Algorithm is faster than FFT for all sparse signals

Feb. 9, 2012
Researchers at the Massachusetts Institute of technology (Cambridge, MA) have developed two algorithms that are faster than the fast Fourier transform (FFT) for all sparse signals.

Being able to compute the Fourier transform of an input signal is crucial in photonics—for example, in determining the spatial frequencies in an image. The standard method of computing a discrete Fourier transform (DFT) is by using the fast Fourier transform (FFT) algorithm. However, algorithms faster than the FFT would be desirable. Researchers at the Massachusetts Institute of technology (Cambridge, MA) have developed two algorithms that are faster than the FFT for all sparse signals. (A sparse signal is one in which some of its Fourier coefficients are near enough to zero that they can be ignored.) While other algorithms have previously been developed to improve on the FFT for sparse signals, none of them have improved on the FFT’s runtime for the whole range of sparse signals.

For a signal with k nonzero Fourier coefficients, and a length n of the input signal that is a power of 2, the researchers show two new DFT algorithms. The first is an O(k log n)-time algorithm for the exactly k-sparse case (where k is small). (O means “on the order of.”) The second is an O(k log n log(n/k))-time algorithm for the general case. In contrast, the FFT computes the DFT in O(n log n) time. Contact Haitham Hassanieh at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!