Stacking OLEDs improves output and lifetime

Jan. 1, 2012
Engineers at Osram AG have developed a stacked organic light-emitting diode (OLED) architecture that improves output characteristics and increases lifetime compared to conventional single-active-layer OLEDs.
Stacked OLEDs have improved output characteristics and longer lifetime than conventional single-active-layer OLEDs
Stacked OLEDs have improved output characteristics and longer lifetime than conventional single-active-layer OLEDs
Stacked OLEDs have improved output characteristics and longer lifetime than conventional single-active-layer OLEDs
Stacked OLEDs have improved output characteristics and longer lifetime than conventional single-active-layer OLEDs
Stacked OLEDs have improved output characteristics and longer lifetime than conventional single-active-layer OLEDs
Stacked OLEDs have improved output characteristics and longer lifetime than conventional single-active-layer OLEDs

Engineers at Osram AG (Munich, Germany) have developed a stacked organic light-emitting diode (OLED) architecture that improves output characteristics and increases lifetime compared to conventional single-active-layer OLEDs. In the stacked-OLED process, undoped and organic active layers—the emissive layer (EML) with red/green/blue (RGB) layers—are first embedded in p-type and n-type doped layers to create a single p-i-n diode or single-active-layer OLED. When three devices are stacked, for example, electron-hole pairs are created at charge-generation layers (CGLs). A twofold white-emitting stacked device achieves the same luminance levels as a single p-i-n device at half the current and twice the voltage.

Because stacked devices have a much higher differential resistivity, stacking improves uniformity of large-area OLEDs without the need to deposit thin metal bus lines on the transparent conductive oxide layer. And because the individual emission values (and corresponding aging mechanisms such as temperature and current density) are lowered for each layer in a stacked device, the overall stacked OLED has a longer lifetime. Contact Christian Boelling at [email protected].

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Horizon Microtechnologies: Coating 3D Printed Parts with Functional Materials

March 28, 2024
Andreas Frölich from Horizon Microtechnologies talks innovations in 3D micro-parts printing with functional materials for various industries.

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!