Mixing phonons with photons in nanophotonic waveguides aids signal processing for computing

March 5, 2015
Demoed radio-frequency photonic device is high power, wavelength insensitive, frequency selective, and narrow linewidth.
An artist's concept shows shows the emission of phonons from a nanometer-scale waveguide as photons flow through it. (Image: Yale University)

Signal processing in integrated photonic circuits is essential to their application in chip-scale computing and sensing devices. Now, researchers from Yale University (New Haven, CT), Sandia National Laboratories (Albuquerque, NM), and the University of Texas at Austin have developed a radio-frequency (RF) processing device for more effective control of information in photonic circuits.1

The device combines coherent photons with phonons (sound quanta) to conduct sophisticated signal processing tasks by harnessing the properties of lower-velocity acoustic waves in the gigahertz range. The gigahertz phonons move at velocities much slower than light, allowing signal processing of light (such as storing, filtering, and delaying) to be done in very small areas.

Frequency-selective RF photonic filter
The researchers transmitted phonons between nanophotonic waveguides via a process called travelling-wave photon–phonon transduction, which led to the demonstration of a high-power, wavelength-insensitive, frequency-selective narrow-linewidth RF photonic filter.

"This is definitely something that's going to be built-upon in the years to come," says Peter Rakich, a Yale assistant professor of applied physics and principal investigator of the research. "It's a very different approach because of its flexibility. We've made something that is smaller as well as lighter, and can go on the same microchip with a processor."

Because the device is small enough to be placed on a silicon chip, it has the potential to be less expensive than other systems. It also has the potential to be adapted to a variety of complex signal-processing designs.

"Our work here is a combination of physics and engineering," says Heedeuk Shin, an associate research scientist in applied physics at Yale, and the study's first author. "We demonstrate a powerful new signal processing operation that isn't possible with photons alone."

Additional authors of the research are Jonathan Cox, Robert Jarecki, and Andrew Starbuck of Sandia National Laboratories, and Zheng Wang of the University of Texas Austin.

Source: http://news.yale.edu/2015/03/05/new-way-control-information-mixing-light-and-sound

REFERENCE:

1. Heedeuk Shin et al., Nature Communications (2015); doi:10.1038/ncomms7427

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!