European MODE-GAP project commercially launches few-mode fiber erbium-doped amplifier

Dec. 10, 2014
MODE-GAP, the European collaborative R&D project, which is investigating space-division multiplexing (SDM; or using a few-mode optical fiber's separate spatial modes to carry separate data channels) to help solve the potential upcoming capacity crunch within the telecommunications networks, has unveiled its latest commercial product: a few-mode fiber erbium=doped amplifier (FM-EDFA).

MODE-GAP, the European collaborative R&D project, which is investigating space-division multiplexing (SDM; or using a few-mode optical fiber's separate spatial modes to carry separate data channels) to help solve the potential upcoming capacity crunch within the telecommunications networks, has unveiled its latest commercial product: a few-mode fiber erbium-doped amplifier (FM-EDFA).

The product, developed for the transmission experiments in the MODE-GAP project, is the first of its kind to be commercially available on the market, following four years of research and development, according to MODE-GAP.

Developed at the University of Southampton (Southampton, England), the new FM-EDFA will be manufactured by Phoenix Photonics (Surrey, England), a fiber-optic specialist company that joined MODE-GAP in 2011.

Compatible with commercial few-mode fibers

The new product is the first core-pumped amplifier to be made readily available to researchers investigating few-mode fiber mode-division multiplexing (MDM) transmission. It is available in forms that are compatible with the 3- and 6-mode fibers designed by optical-fiber maker OFS (Norcross, GA). Earlier this year, the MODE-GAP project demonstrated record long-haul reach using a full-mode fiber (FMF) technology transmission link, which was enabled through the use of the Southampton FM-EDFAs.

The FM-EDFA is the latest in a range of products that are now commercially available as a result of the project, including few-mode fiber from OFS Fitel, photonic lanterns and fiber-mode converters from Phoenix Photonics, and 2-μm-emitting lasers from Eblana Photonics.

The MODE-GAP project is supported within the European Commission’s 7th Framework Programme. Technologies being developed by MODE-GAP include specialist long-haul transmission fibers, novel rare-earth-doped optical amplifiers, transmitter and receiver components, and data-processing techniques.

For a project overview of MODE-GAP, see http://modegap.eu/?page_id=5

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!