Yet another use for graphene: CGC and Plastic Logic create graphene-based flexible display

Sept. 5, 2014
A flexible display incorporating graphene in its pixels’ electronics has been successfully demonstrated by the Cambridge Graphene Centre (CGC) at the University of Cambridge and Plastic Logic (both in Cambedge, England), the first time graphene has been used in a transistor-based flexible device, says the CGC.

A flexible display incorporating graphene in its pixels' electronics has been successfully demonstrated by the Cambridge Graphene Centre (CGC) at the University of Cambridge and Plastic Logic (both in Cambridge, England), the first time graphene has been used in a transistor-based flexible device, says the CGC.

The new prototype is an active-matrix electrophoretic display, similar to the screens used in today's e-readers, except it is made of flexible plastic instead of glass. In contrast to conventional displays, the pixel electronics, or backplane, includes a solution-processed graphene electrode, which replaces the sputtered-metal electrode layer within Plastic Logic's conventional devices, increasing flexibility.

The new 150-pixel-per-inch (150 ppi) backplane was made at low temperatures (less than 100°C) using Plastic Logic's organic thin film transistor (OTFT) technology. The graphene electrode was deposited from solution and subsequently patterned with micron-scale features to complete the backplane.

For this prototype, the backplane was combined with an electrophoretic display; future demonstrations may incorporate liquid-crystal (LC) or organic LED (OLED) technology to achieve full color and video functionality.

Medical-imaging uses also

These lightweight flexible active-matrix backplanes can also be used for sensors, with novel digital medical-imaging and gesture-recognition applications already in development.

This joint effort between Plastic Logic and the CGC was recently boosted by a grant from the UK Technology Strategy Board, within the "realising the graphene revolution" initiative. This will target the realization of an advanced full-color OLED based display within the next 12 months.

The project is funded by the Engineering and Physical Sciences Research Council (EPSRC) and the EU's Graphene Flagship.

Source: http://www.cam.ac.uk/research/news/first-graphene-based-flexible-display-produced

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!