Miniature SiN frequency-comb microresonator leads to 1.44 Tbit/s data transmission over 300 km

April 14, 2014
Researchers at Karlsruhe Institute of Technology (KIT; Karlsruhe, Germany) and the Swiss École Polytechnique Fédérale de Lausanne (EPFL) have transmitted 1.44 Tbit/s over 300 km of fiber using an optical frequency comb light source; they did this by carefully adjusting pump conditions for low phase noise, producing an extremely spectrally pure comb that allowed them to reach very high data rates by using an advanced modulation format.

Researchers at Karlsruhe Institute of Technology (KIT; Karlsruhe, Germany) and the Swiss École Polytechnique Fédérale de Lausanne (EPFL) have transmitted 1.44 Tbit/s over 300 km of fiber using an optical frequency comb light source; they did this by carefully adjusting pump conditions for low phase noise, producing an extremely spectrally pure comb that allowed them to reach very high data rates by using an advanced modulation format.1

Single laser, simpler WDM

One overwhelming potential advantage of using a frequency comb for wavelength-division multiplexing (WDM) approaches is that a frequency comb requires just one laser, while a standard WDM setup requires as many lasers as their are different wavelengths; not only is it hard to work with all these lasers for standard WDM, but it is hard to keep their wavelengths all stabilized with respect to each other. In a frequency comb, the many wavelengths are automatically stable in relation to each other.

In their joint experiment, the KIT and EPFL researchers showed that integrated-optical frequency comb sources with large line spacings can be realized on photonic chips (the spectral lines in conventional frequency combs are normally too close to each other to use for data communications). For this purpose, they use an optical microresonator made of silicon nitride (SiN), into which laser light is coupled via a waveguide and stored for a relatively long period of time.

“Due to the high light intensity in the resonator, the so-called Kerr effect can be exploited to produce a multitude of spectral lines from a single continuous-wave laser beam, hence forming a frequency comb,” says Jörg Pfeifle, who performed the transmission experiment at KIT. This method of generating Kerr frequency combs was discovered by Tobias Kippenberg of EPFL in 2007. Kerr combs are characterized by a large optical bandwidth and can feature line spacings that perfectly meet the requirements of data transmission.

“We are just at the beginning,” says Christian Koos, one of the researchers. “In the experiment presented, we only use 20 lines of the frequency comb. This may certainly be increased. New experiments are planned.”

Source: http://www.kit.edu/visit/pi_2014_14958.php

REFERENCE:

1. Joerg Pfeifle et al., Nature Photonics (2014); doi: 10.1038/nphoton.2014.57.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Achieving Ultralow-Loss Photonics Array Alignment

Feb. 23, 2024
Two- and three-dimensional photonics arrays are commonly used for coupling light in photonic integrated circuits. With the increasing demand for ultralow-loss transmission in ...

Control Techniques in Laser Processing

Feb. 23, 2024
A laser processing tool is only as good as the motion equipment underneath it. One must first consider design characteristics of a motion platform, and second, advanced control...

High-Precision Laser Processing for Medical Device Manufacturing

Feb. 23, 2024
Laser processing has been used for decades to manufacture tubular medical devices, such as stents, valves, and vascular grafts. However, achieving the precision that is necessary...

Selecting Optimal Positioning Equipment for Laser Direct-Write Processes

Feb. 23, 2024
Choosing the optimal automation equipment for a given process requires a thorough understanding of the process parameters and the effects of positioning errors on the results....

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!