e2v to create imager for Russian Academy of Sciences UV space telescope

Aug. 28, 2013
Chelmsford, England--Keith Attwood, CEO of e2v and Vladimir Nevolin, deputy director of the Lebedev Physical Institute of the Russian Academy of Sciences (LPI RAS; Moscow, Russia) signed a contract for the first phase of a multimillion pound project at the MAKS International Aviation and Space Show (Aug. 27 to Sept. 1, 2013; Zhukovsky, Russia).

Chelmsford, England--Keith Attwood, CEO of e2v and Vladimir Nevolin, deputy director of the Lebedev Physical Institute of the Russian Academy of Sciences (LPI RAS; Moscow, Russia) signed a contract for the first phase of a multimillion pound project at the MAKS International Aviation and Space Show (Aug. 27 to Sept. 1, 2013; Zhukovsky, Russia). The contract is for the supply of a high-performance imaging subsystem for three UV spectrographs onboard the World Space Observatory-Ultraviolet (WSO-UV) space telescope, to be launched in 2016.

The WSO-UV is an international collaboration led by Russia to build and operate a space telescope with a 1.7 m primary mirror. It will work in the UV range of the spectrum and will study the Universe at wavelengths shorter than the reach of ground-based instruments. The optics of the observatory -- the telescope, equipped with high and low resolution spectrographs -- will be made in Russia, while e2v will supply UV cameras for spectrographs. The Institute of Astronomy, Russian Academy of Sciences (INASAN) is the science contractor for the mission and will work with LPI RAS.

e2v’s back-thinned CCD image sensors will be configured and tested for optimum quantum efficiency (QE) in the 120 to 310 nm wavelength range -- a range considerably lower than the typical 270 nm test limit. e2v will also design a vacuum cryostat enclosure to ensure stable operation at short wavelengths. e2v is working with Rutherford Appleton Laboratory (RAL) Space’s Imaging Systems (Didcot, England) for the supply of the space-qualified CCD drive electronics.

Another feature of the subsystem is the ability to integrate for up to an hour and read out low signal levels with very low noise. This is achieved using an e2v image sensor, video-processing electronics from RAL, and the low-temperature operation (-100 °C) provided by the cryostat.


Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!