Terahertz internal tagging method uniquely identifies 3D printed objects

July 23, 2013
Pittsburgh, PA--Scientists at Carnegie Mellon University and Microsoft Research are using the same 3D printing process used to produce an object to also simultaneously generate an internal, invisible tag.

Pittsburgh, PA--Scientists at Carnegie Mellon University and Microsoft Research (Redmond, WA) are using the same 3D printing process used to produce an object to also simultaneously generate an internal, invisible tagor InfraStructs as they have been dubbedthat can be read with a terahertz imaging system.

In proof-of-concept 3D printing experiments, Karl Willis, a recent Ph.D. graduate in computational design at Carnegie Mellon, and Andy Wilson, a principal researcher at Microsoft Research, have demonstrated several possible tag designs and the terahertz imaging and data processing steps necessary to read them. The tags themselves come at no extra cost, Willis said, but terahertz imaging, still in its infancy, can be pricey. As this imaging technology matures and becomes more affordable, however, InfraStructs could be used for a number of applications beyond keeping track of inventory or making point-of-sale transactions.

For instance, they could help mobile robots recognize or differentiate between things. They might encode information into custom accessories used in game systems. Or, they might enable new tabletop computing scenarios in which objects can be sensed regardless of whether they are stacked, buried or inserted inside other objects. Willis and Wilson will present their findings July 25 at SIGGRAPH 2013, the International Conference on Computer Graphics and Interactive Techniques, in Anaheim, CA.

Unlike conventional manufacturing, every single thing produced with digital fabrication techniques, such as 3D printing and laser cutting, can differ from the next, even in subtle ways. "You probably don't want to have visible barcodes or QR codes on every object you make," Willis said. Inserting a radio frequency identification (RFID) tag into each component would be a possibility, he acknowledged, but for now that would require interrupting the normal 3D printing process. InfraStructs, by contrast, can be made with the same layer-by-layer process used for producing the object. In some cases, information can be encoded by positioning bubbles or voids inside the object; those voids reflect terahertz radiation. In other cases, materials that are reflective of terahertz radiation might be used to encode the information or create images inside the object.

"The ability to embed 3D patterns gives designers new opportunities in creating objects that are meant to be sensed and tracked," Wilson said. "One idea is to embed a code just under the surface of the object, so that a THz beam can recover its position on the surface, wherever it strikes the object."

Willis' work on InfraStructs occurred while he was an intern at Microsoft Research. Additional research on materials, fabrication processes and imaging techniques will be necessary if the tags are to be widely adopted. InfraStructs aim to take advantage of trends toward high-speed electronics at THz frequencies and the rapidly growing capabilities of digital fabrication. For more information, visit the project website at http://www.karlddwillis.com/projects/infrastructs/.

SOURCE: Carnegie Mellon University; http://www.cmu.edu/news/stories/archives/2013/july/july22_internaltagging.html

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!