LRO spectrometer finds helium in Moon's atmosphere

Sept. 13, 2012
Greenbelt, MD--NASA scientists using the LAMP spectrometer aboard the Lunar Reconnaissance Orbiter (LRO) observed helium in the atmosphere surrounding our Moon.

Greenbelt, MD--NASA's Goddard Space Flight Center reports that scientists using the Lyman Alpha Mapping Project (LAMP) spectrometer aboard NASA's Lunar Reconnaissance Orbiter (LRO) have made the first spectroscopic observations of the noble gas helium in the tenuous atmosphere surrounding the Moon. The remote-sensing observations complement in situ measurements taken in 1972 by the Lunar Atmosphere Composition Experiment (LACE) deployed by Apollo 17.

Although designed to map the lunar surface, the LAMP team expanded its science investigation to examine the far ultraviolet emissions visible in the tenuous atmosphere above the lunar surface, detecting helium over a campaign spanning more than 50 orbits. Because helium also resides in the interplanetary background, several techniques were applied to remove signal contributions from the background helium and determine the amount of helium native to the Moon. Geophysical Research Letters published this research in 2012.

"The question now becomes, does the helium originate from inside the moon, for example, due to radioactive decay in rocks, or from an exterior source, such as the solar wind?" says Alan Stern, LAMP principal investigator and associate VP of the Space Science and Engineering Division at Southwest Research Institute, Boulder, CO. "If we find the solar wind is responsible, that will teach us a lot about how the same process works in other airless bodies," says Stern.

If spacecraft observations show no such correlation, radioactive decay or other internal lunar processes could be producing helium that diffuses from the interior or that is released during lunar quakes. "With LAMP's global views as it moves across the moon in future observations, we'll be in a great position to better determine the dominant source of the helium," says Stern.

Another point for future research involves helium abundances. The LACE measurements from the 1970's showed an increase in helium abundances as the night progressed. This could be explained by atmospheric cooling, which concentrates atoms at lower altitudes. LAMP will further build on those measurements by investigating how the abundances vary with latitude.

During its campaign, LACE also detected the noble gas argon on the lunar surface. Although significantly fainter to the spectrograph, LAMP also will seek argon and other gases during future observations. "These ground-breaking measurements were enabled by our flexible operations of LRO as a Science Mission, so that we can now understand the moon in ways that were not expected when LRO was launched in 2009," said Richard Vondrak, LRO project scientist at NASA's Goddard Space Flight Center.

SOURCE: NASA’s Goddard Space Flight Center; www.nasa.gov/mission_pages/LRO/news/helium-detected.html

IMAGE: The Lyman Alpha Mapping Project (LAMP) spectrometer aboard the LRO (shown here in a pre-flight photo) uses a novel method to peer into the perpetual darkness of the moon's so-called permanently shadowed regions and "see" the lunar surface using the ultraviolet light from nearby space and stars. (Courtesy NASA Goddard/Debbie McCallum)

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!