Flipped "egg cartons" of laser light trap giant atoms

Jan. 4, 2012
Ann Arbor, MI--University of Michigan physicists have devised a way to trap giant Rydberg atoms in an optical lattice with up to 90% efficiency.

Ann Arbor, MI--Building on earlier work, University of Michigan physicists have devised a way to optically trap giant Rydberg atoms with up to 90% efficiency, an achievement that could advance quantum computing and terahertz imaging, among other applications. "Our optical lattice is made from a pair of counter-propagating laser beams and forms a series of wells that can trap the atoms, similar to how an egg carton holds eggs," said Georg Raithel, a U-M physics professor and co-author of a paper on the work in Physical Review Letters. Other co-authors are physics doctoral student Sarah Anderson and recent doctoral graduate Kelly Younge.

The researchers developed a unique way to solve a problem that had been limiting trapping efficiency to single-digit percentages. For Rydberg atoms to be trapped, they first have to be cooled to slow them down. The laser cooling process that accomplishes that tended to leave the atoms at the peaks of what the researchers call the "lattice hills" and the atoms typically do not stay in those positions.

"To overcome this obstacle, we implemented a method to rapidly invert the lattice after the Rydberg atoms are created at the tops of the hills," Anderson said. "We apply the lattice inversion before the atoms have time to move away, and they therefore quickly find themselves in the bottoms of the lattice wells, where they are trapped."

Raithel says there is plenty of technological room left to reach 100% trapping efficiency, which is necessary for advanced applications. Rydberg atoms are candidates to implement gates in future quantum computers and could also be used in terahertz imaging and detection devices that could be used in airport scanners or surveillance equipment.

SOURCE: University of Michigan; http://ns.umich.edu/new/20144

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!