On-chip optical isolator from MIT could speed all-optical computing

Nov. 30, 2011
Cambridge, MA--MIT researchers have made a breakthrough towards realizing all-optical computing: an integrated photonics or chip-based optical isolator.

Cambridge, MA--Massachusetts Institute of Technology researchers have made a breakthrough towards realizing all-optical computing: an integrated photonics or chip-based optical isolator. In fiber-optic communication, data-carrying laser light is converted to electronic form, processed through electronic circuits, and then converted back to light using a laser. The new isolator device could eliminate those extra electronic-conversion steps, allowing the light signal to be processed directly.

The new component is a "diode for light," says Caroline Ross, the Toyota Professor of Materials Science and Engineering at MIT, who is co-author of a Nature Photonics paper reporting the new device. It is analogous to an electronic diode, a device that allows an electric current to flow in one direction but blocks it from going the other way; in this case, it creates a one-way street for light, rather than electricity.

This is essential, Ross explains, because without such a device stray reflections could destabilize the lasers used to produce the optical signals and reduce the efficiency of the transmission. Currently, a discrete device called an isolator is used to perform this function, but the new system would allow this function to be part of the same chip that carries out other signal-processing tasks.

To develop the device, the researchers had to find a material that is both transparent and magnetictwo characteristics that rarely occur together. They ended up using a form of a material called garnet, which is normally difficult to grow on the silicon wafers used for microchips. Garnet is desirable because it inherently transmits light differently in one direction than in another: It has a different index of refraction depending on the direction of the beam.

The researchers were able to deposit a thin film of garnet to cover one half of a loop connected to a light-transmitting channel on the chip. The result was that light traveling through the chip in one direction passes freely, while a beam going the other way gets diverted into the loop. The whole system could be made using standard microchip manufacturing machinery, Ross says. "It simplifies making an all-optical chip," she says. The design of the circuit can be produced "just like an integrated-circuit person can design a whole microprocessor. Now, you can do an integrated optical circuit."

The technology could greatly boost the speed of data-transmission systems by enabling all-optical signal processing.

SOURCE: MIT; http://web.mit.edu/press/2011/optical-computing-diode.html

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!