DIABETES MANAGEMENT: Novel design helps photoacoustic spectroscopy clear hurdles to noninvasive glucose measurement

Jan. 21, 2014
A new noninvasive approach to blood glucose monitoring uses photoacoustic spectroscopy (PAS): a painless pulse of laser light, applied externally to the skin, is absorbed by glucose molecules and creates a measurable sound signature that reads sugar levels in the fluid in and under skin cells in seconds.

A new noninvasive approach to blood glucose monitoring uses photoacoustic spectroscopy (PAS): a painless pulse of laser light, applied externally to the skin, is absorbed by glucose molecules and creates a measurable sound signature that reads sugar levels in the fluid in and under skin cells in seconds.

The approach was devised by researchers at Biophysics Institute at the University of Frankfurt (Germany).1 Data showing the skin cell glucose levels at one-hundredth of a millimeter beneath the skin is related to blood glucose levels, said lead researcher Werner Mäntele, Ph.D., but previous attempts to use PAS in this manner have been hampered by distortion related to changes of air pressure, temperature, and humidity caused by the contact with living skin.

To overcome these constraints, the team used an open, windowless cavity architecture tuned for optimum performance in the ultrasound range between 50 and 60 kHz. In combination with an external cavity tunable quantum cascade laser emitting from ~1000 to 1245 cm-1, the approach enables a high signal-to-noise-ratio (SNR) for mid-infrared (mid-IR) spectra of human skin. This facilitates measurement in situ the absorption spectrum of human epidermis in the mid-IR region at high SNR in just a few seconds. While the design is still experimental and would have to be tested and approved by regulatory agencies before becoming commercially available, the team continues to refine it. In a close collaboration with an industry partner (Elte Sensoric; Gelnhausen, Germany), they expect to have a small shoebox-sized device ready in three years, followed by a portable glucometer.

1. M. A. Pleitez et al., Rev. Sci. Instrum., 84, 084901 (2013); http://dx.doi.org/10.1063/1.4816723.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!