NANOPOSITIONING: Piezo motors and actuators drive bio-optics precision

July 1, 2010
Precision and accuracy are at the heart of biomedical instrumentation, including imaging and treatment tools—and the motors these instruments incorporate have much to do with their performance.

Precision and accuracy are at the heart of biomedical instrumentation, including imaging and treatment tools—and the motors these instruments incorporate have much to do with their performance. The physical limitations of traditional electromagnetic drive systems are being challenged by increasing accuracy requirements in the micron and nanometer ranges, along with an inclination to miniaturization, dynamics streamlining and interference immunity. Because medical devices can be made smaller, more precise, lighter and easier to control by employing piezoelectric motors, these alternatives are finding their way into a growing number of medical device applications; for instance, for cell imaging, 3D scanning, and laser beam steering in ophthalmology, dermatology and cosmetology.

In optical coherence tomography (OCT), for instance, piezoelectric motors are used to impart rapid periodic motion to the unit's reference mirror and imaging optics. To enable creation of two- and three-dimensional images from optical interference patterns, optical fibers must be moved both axially and laterally during the scan. Piezo motors have proven to provide more precise movements than conventional electromagnetic motors, and thus produce improved image resolution. Confocal microscopy, used in ophthalmology for quality assurance of implants, requires very precise movement of the optics for adjustment the focal plane and for surface scanning. To enable this, piezoelectric positioning systems are integrated directly into the optics.

The latest designs of piezo motors—including ultrasonic piezo linear (or resonant) and piezo stepper motors—have a number of advantages over electromagnetic motors, including unlimited travel (movement). According to Physik Instrumente L.P. (Auburn, MA; www.pi-usa.us), new ultrasonic resonant motors are characterized by speeds up to 500 mm/s, in a compact and simple design. They can produce accelerations to 10 g; are very stiff, a prerequisite for their fast step-and-settle times (on the order of a few milliseconds); and provide resolution to 0.05 µm. Piezo stepper motors, on the other hand, can achieve much higher forces, up to 700 N (155 lb), and resolution of 50 pm. They also enable extremely high-precision positioning over long travel ranges, and can perform highly dynamic motions. Both operate in the presence of strong magnetic fields or at very low temperatures.

About the Author

Jim McMahon | CEO, ZebraCom

Jim McMahon is CEO of ZebraCom (Simi Valley, CA), a public relations firm for industrial and high-tech companies.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!