FBG-based interferometer senses the tiniest of acoustic signals

Aug. 9, 2017
A different type of fiber Bragg grating (FBG)-based sensor has 1000X more sensitivity than standard FBG sensors.

Fiber-Bragg-grating (FBG)-based optical sensors are typically used to measure distributed stress, strain, and temperature over a wide area. But a different type of FBG-based sensor from Optics11 (Amsterdam, Netherlands) has 1000X more sensitivity than standard FBG sensors, and is around 100X faster compared to Rayleigh-scattering technology.

Rather than detecting the reflected signals from individual FBGs along a length of fiber, the ZonaSens system is instead an interferometer that measures an optical phase change defined as a variation of displacement or refractive index between FBGs. By measuring the phase of light reflected, for example, from four physically separate FBGs labeled A1, A2, A3, and A4, ZonaSens can define simultaneous signals (“zones”) A43 and A21, which are equal to the optical path difference between given FBGs. The total amount of simultaneous zones in one fiber can be up to 80—however, by combining multiple fibers, this number can reach a few hundred. And there is no optical time-domain reflectometer (OTDR), optical Fourier-domain reflectometer (OFDR), or spectral processing involved. Because the resolution of the measurement is on a subnanometer scale, the system can monitor extremely tiny changes in strain at rapid speeds up to 1 MHz and acquire an acoustic signal from the fiber (and associated object or system) under test.

Applications include analysis of ultrasound signals for structural health monitoring (for instance, bearings at around 200–300 kHz) that are traditionally limited to around 10 kHz for standard technologies. Other applications include monitoring of train wheels, pumps/drills and similar mechanical equipment, and hydrophone-related systems that require high speed and high sensitivity. Reference: http://optics11.com/products/zona-sens.

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!