Sapphire-core glass-clad fiber has 'atomically smooth' core, low loss

Nov. 4, 2016
A team of researchers has fabricated sapphire crystalline-core, glass-clad optical fibers that they call "atomically smooth."
Content Dam Lfw Print Articles 2016 11 1611lfw Nb F4

Crystalline-core fibers have potential as both active and passive optical devices. Researchers from National Dong Hwa University (Hualien, Taiwan), National Taiwan Ocean University (Keelung, Taiwan), and National Chi Nan University (Nantou, Taiwan) have fabricated sapphire crystalline-core, glass-clad optical fibers that have a core surface variation of only about 1.9 Å, which they call "atomically smooth." The smoothness of the core/cladding interface results in an experimentally measured propagation loss through the fiber of on the order of 0.01–0.1 dB/cm, which is the lowest loss ever measured for conventional Ti:sapphire channel waveguides and ultrafast-laser-inscribed waveguides, according to the researchers. This low loss makes the fiber attractive for high-power devices and possibly low-threshold lasers.

To make the fiber, a commercially available sapphire rod was heated and drawn to produce a 40-μm-diameter sapphire crystal fiber, then annealed. After placing the sapphire fiber into a borosilicate glass cladding capillary with inner and outer diameters of 50 and 320 μm, respectively, the glass capillary was laser-heated so that it collapsed and bonded to the sapphire core. To examine the core/cladding interface, the researchers viewed cross-sections of the interface with a scanning electron microscope and a field-emission high-resolution transmission electron microscope. In addition, bright-field views of the output end of the fiber were taken with an optical microscope and back-scattering spectral measurements were made of the fiber using a laser and confocal Raman spectrometer. Results showed no voids or pores at the interface or other defects, while the sapphire maintained high crystalline quality. Reference: C.-C. Lai et al., Opt. Express (2016); http://dx.doi.org/10.1364/oe.24.020089.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!