Transient plasma mirror/filter manipulates high-energy laser pulses

Sept. 14, 2016
The scientific community invests tremendous effort in developing optical components such as lenses, mirrors, gratings, coatings, optical fibers, and even specialized photonic crystals that can withstand and manipulate high-energy laser pulses.
Content Dam Lfw Print Articles 2016 09 1609lfw Nb F1

The scientific community invests tremendous effort in developing optical components such as lenses, mirrors, gratings, coatings, optical fibers, and even specialized photonic crystals that can withstand and manipulate high-energy laser pulses. But researchers at Heinrich-Heine-Universität Düsseldorf (Germany) have now used counterpropagating laser pulses to generate transient plasma structures that can act as photonic-crystal cavities to manipulate high-energy laser pulses in ways that no solid optical materials can.

Rather than constructing a conventional photonic crystal through layers of dielectrics or metals, the researchers used oppositely propagating laser beams to generate a transient plasma photonic crystal (TPPC) by creating arrays of periodic microplasmas. This density grating has a specific bandgap as dictated by Maxwell-Vlasov simulations that affects the mode profile of laser light entering the TPPC just as if the laser were entering a physical mirror or filter structure. Unlike typical silica optical components that have laser-damage thresholds on the order of 10 J/cm2 for femtosecond to picosecond pulse durations, the TPPC structures can handle fluence values more than five orders of magnitude larger. Reference: G. Lehmann and K. H. Spatschek, Phys. Rev. Lett., 116, 22, 225002 (Jun. 3, 2016).

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!