MEMS-based VCSEL reaches record 150 nm tuning range

Last year, Laser Focus World reported on a microelectromechanical systems (MEMS)-based 1310 nm widely tunable vertical-cavity surface-emitting laser (VCSEL) from Praevium Research (Santa Barbara, CA), Thorlabs (Newton, NJ), Advanced Optical Microsystems (AOMicro; Mountain View, CA), and the Massachusetts Institute of Technology (MIT; Cambridge, MA) that enabled 760 kHz optical coherence tomography (OCT) scanning in conjunction with a 110 nm tuning range. A year later, the same research group has reached new heights with a 150 nm tuning range at 1310 nm—the widest tuning range reported for any VCSEL at any wavelength.

MEMS-based VCSEL achieves 150 nm tuning range via movable suspended mirror

The record tuning range was made possible through an improved cavity and electrostatic actuator design. These MEMS-based VCSELS essentially consist of a lasing cavity in which the top mirror is suspended on a MEMS actuator. Tunability was expanded by using a thinner cavity in an optically pumped configuration. Optical pumping eliminates resistive heating and the need to dope the mirrors and cavity, significantly reducing free-carrier absorption and subsequently reducing threshold gain for lasing over a wider portion of the gain spectrum. The new devices use a shorter total cavity length that extends the free-spectral range. Wideband mirrors and wider-gain indium-phosphide (InP)-based quantum wells also promote an expanded tuning range. Contact Vijaysekhar Jayaraman at vijay@praevium.com.

Most Popular Articles

Webcasts

Handheld Spectrometers

Spectroscopy can be a powerful measurement tool, and handheld spectrometers offer the ultimate in portability, so the instrument can be applied wherever meas...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...
Technical Digests

Keeping pace with developments in Raman spectroscopy for molecular and nanoparticle research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...
Sponsored by

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

P-series 1470nm to 1550 nm

Ultra-High Brightness Direct Diode Lasers 20W to 135W

T-Series 915nm, 940nm, or 976nm

Ultra-High Brightness Direct Diode Lasers 85W to 575W

PCB Laser Marking System

PCB Laser Marking Systems

RELATED COMPANIES

Lighthouse Photonics Inc

Provides sealed, turn-key, cost-effective, diode-pumped solid-state (DPSS) lasers for s...

Fibertek Inc

Specializes in the design, development, manufacture, and testing of advanced diode-pump...

Control Micro Systems Inc

Offers laser marking, laser cutting, laser drilling and laser welding systems for a wid...

Social Activity

  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS