Ultrahigh-intensity laser pulses could be measured with relativistic electrons

May 11, 2012
Researchers at the Max-Planck-Institut für Kernphysik have proposed an accurate peak-intensity measurement technique that relies on the interaction of the laser pulse with a beam of ultrarelativistic electrons.

So-called ultrarelativistic laser pulses are those with peak intensities exceeding about 1020 W/cm2; intensities of such pulses—for example, the 1022 W/cm2 focused pulses produced by the 300 TW Hercules laser at the University of Michigan—are difficult to measure, because they far exceed the damage threshold of any conventional equipment. Researchers at the Max-Planck-Institut für Kernphysik (Heidelberg, Germany) have proposed an accurate peak-intensity measurement technique that relies on the interaction of the laser pulse with a beam of ultrarelativistic electrons. The highly directional electron beam creates a radiation spectrum via nonlinear Thomson scattering; this spectrum’s angular aperture is measured, determining the peak intensity.

The researchers calculated the details of this interaction (see plot of electron propagation direction θ as a function of plane-wave phase φ) both neglecting and including the effects of radiation reaction (black dotted curve and red solid curve, respectively), which is the action of the radiation emitted by the electron on the motion of the electron itself. The researchers note that the required electron energies (23 MeV in the calculation for a peak intensity of 1022 W/cm2) are well within reach of existing tabletop laser plasma accelerators. Contact Antonino Di Piazza at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!